【題目】已知數(shù)列{an},{bn}滿足a1=1,an+1=2an+1,b1=4,bn﹣bn﹣1=an+1(n≥2).
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求數(shù)列{an},{bn}的通項公式.
【答案】
(1)
證明:由an+1=2an+1得an+1+1=2(an+1),
又an+1≠0,∴ ,即{an+1}為等比數(shù)列.
(2)
解:由(1)知an+1=(a1+1)qn﹣1=22n﹣1=2n,
∴ , ,
將以上n﹣1個式子累加可得 ,又b1=4,
故 .
【解析】(1)由an+1=2an+1得an+1+1=2(an+1),即可證明.(2)由(1)知an+1=2n , 可得: ,利用“累加求和”方法與等比數(shù)列的求和公式即可得出.
【考點精析】解答此題的關(guān)鍵在于理解等比數(shù)列的通項公式(及其變式)的相關(guān)知識,掌握通項公式:,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后拋擲兩枚大小相同的骰子.
(1)求點數(shù)之和出現(xiàn)7點的概率;
(2)求出現(xiàn)兩個6點的概率;
(3)求點數(shù)之和能被3整除的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與拋物線相交于不同兩點、,與圓相切于點,且為線段中點.
(1) 若是正三角形(是坐標原點),求此三角形的邊長;
(2) 若,求直線的方程;
(3) 試對進行討論,請你寫出符合條件的直線的條數(shù)(直接寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域均為,且是奇函數(shù),是偶函數(shù),,其中為自然對數(shù)的底數(shù).
(1)求的解析式,并證明:當時,;
(2)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:f(x)= ,且f(x+2)=f(x),g(x)= ,則方程f(x)=g(x)在區(qū)間[﹣5,1]上的所有實根之和為( )
A.﹣5
B.﹣6
C.﹣7
D.﹣8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸的交點中,相鄰兩個交點之間的距離為 ,且圖象上一個最高點為M( ,3).
(1)求f(x)的解析式;
(2)先把函數(shù)y=f(x)的圖象向左平移 個單位長度,然后再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)y=g(x)的圖象,試寫出函數(shù)y=g(x)的解析式.
(3)在(2)的條件下,若總存在x0∈[﹣ , ],使得不等式g(x0)+2≤log3m成立,求實數(shù)m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=4cos2x﹣4 sinxcosx的最小正周期為π(>0).
(1)求的值;
(2)若f(x)的定義域為[﹣ , ],求f(x)的最大值與最小值及相應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且
(1)討論的單調(diào)區(qū)間;
(2)若直線的圖象恒在函數(shù)圖象的上方,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com