精英家教網 > 高中數學 > 題目詳情
正方體ABCD-A1B1C1D1中,BB1與平面ACD1所成角的正弦值為
3
3
3
3
分析:BB1與平面ACD1所成角即為DD1與平面ACD1所成角,過點D作平面ACD1的垂線交平面與點O,連接D1O,則∠DD1O即為DD1與平面ACD1所成角,利用等體積法求出DO長,在直角三角形中求出∠DD1O的正弦值即可.
解答:解:∵BB1∥DD1
∴BB1與平面ACD1所成角即為DD1與平面ACD1所成角,
過點D作平面ACD1的垂線交平面與點O,連接D1O,則∠DD1O即為DD1與平面ACD1所成角,
設正方體ABCD-A1B1C1D1的棱長為1,
∵VD-ACD1=VD1-ADC
1
3
×
3
4
(
2
)2
×DO=
1
3
×
1
2
×1×1×1,則DC=
3
3

在Rt△DD1O中,sin∠DD1O=
DO
DD1
=
3
3
1
=
3
3

故答案為:
3
3
點評:本小題主要考查正方體的性質、直線與平面所成的角、點到平面的距離的求法,利用等體積轉化求出D到平面ACD1的距離是解決本題的關鍵所在,這也是轉化思想的具體體現.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

正方體ABCD-A1B1C1D1的各頂點均在半徑為1的球面上,則四面體A1-ABC的體積等于
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD-A1B1C1D1中分離出來的:
(1)試判斷A1是否在平面B1CD內;(回答是與否)
(2)求異面直線B1D1與C1D所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積的水.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知邊長為6的正方體ABCD-A1B1C1D1,E,F為AD、CD上靠近D的三等分點,H為BB1上靠近B的三等分點,G是EF的中點.
(1)求A1H與平面EFH所成角的正弦值;
(2)設點P在線段GH上,
GP
GH
=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
10
10

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在棱長為2cm的正方體ABCD-A1B1C1D1中,A1B1的中點是P,過點A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M是棱AB的中點,過A1,M,C三點的平面與CD所成角正弦值(  )

查看答案和解析>>

同步練習冊答案