6.若x=3${\;}^{ln\frac{3}{2}}$,y=logπ3,則x,y的大小關(guān)系是x>y.

分析 利用對(duì)數(shù)的運(yùn)算性質(zhì)分別比較兩數(shù)與1的大小得答案.

解答 解:∵$ln\frac{3}{2}>ln1=0$,
∴x=3${\;}^{ln\frac{3}{2}}$>30=1,
又y=logπ3<logππ=1,
∴x>y.
故答案為:x>y.

點(diǎn)評(píng) 本題考查對(duì)數(shù)的大小比較,考查了對(duì)數(shù)的運(yùn)算性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.容器中有純酒精a(a>1)升,現(xiàn)倒出1升后用水加滿(mǎn)攪勻,并規(guī)定“倒出1升后用水加滿(mǎn)攪勻”為一次操作,若第n次操作后容器中酒精濃度為an,則an+1用an表示為${a}_{n+1}={a}_{n}•\frac{a-1}{a}$;數(shù)列{an}通項(xiàng)公式是an=$(\frac{a-1}{a})^{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)=-x3+x2+tx+1在(-1,1)上是增函數(shù),則t的取值范圍是( 。
A.t>5B.t<5C.t≥5D.t≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=${(\frac{1}{2})^{|x|}}-\frac{1}{{1+{{log}_{\frac{1}{2}}}(1+|x|)}}$,則使得f(x)>f(2x-1)成立的x的取值范圍是( 。
A.$(\frac{1}{3},1)$B.$(-∞,\frac{1}{3})∪(1,+∞)$
C.$(-\frac{1}{3},1)$D.$(-∞,-1)∪(-1,\frac{1}{3})∪(1,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≥0}\\{y≥0}\end{array}\right.$則z=x-2y的最小值是( 。
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且cosB+cosAcosC-$\sqrt{3}$sinAcosC=0.
(Ⅰ)求cosC的值;
(Ⅱ)若c=2時(shí),求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的圖象向左平移φ(φ>0)個(gè)單位后關(guān)于原點(diǎn)對(duì)稱(chēng),則φ的最小值為( 。
A.$\frac{5π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)計(jì)一個(gè)算法:輸入實(shí)數(shù)a1,a2,…,aN,輸出a1,a2,…aN中最大的數(shù)和最小的數(shù),并畫(huà)出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知a>0,b∈R,函數(shù)f(x)=4ax2-2bx-a+b,x∈[0,1].
(1)求函數(shù)f(x)的最大值;
(2)若-1≤f(x)≤1對(duì)任意的x∈[0,1]恒成立,求a+b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案