16.已知a>0,b∈R,函數(shù)f(x)=4ax2-2bx-a+b,x∈[0,1].
(1)求函數(shù)f(x)的最大值;
(2)若-1≤f(x)≤1對任意的x∈[0,1]恒成立,求a+b的取值范圍.

分析 (1)求導(dǎo)函數(shù),再分類討論:當(dāng)b≤0時,f′(x)>0在0≤x≤1上恒成立,此時最大值為:f(1)=|2a-b|﹢a;當(dāng)b>0時,在0≤x≤1上的正負(fù)性不能判斷,此時最大值為:f(x)max=max{f(0),f(1)}=|2a-b|﹢a,由此可得結(jié)論;
(2)由(1)知:函數(shù)在0≤x≤1上的最大值為|2a-b|﹢a,且函數(shù)在0≤x≤1上的最小值比-(|2a-b|﹢a)要大.根據(jù)-1≤f(x)≤1對x∈[0,1]恒成立,可得|2a-b|﹢a≤1,從而利用線性規(guī)劃知識,可求a+b的取值范圍.

解答 解:(1)f′(x)=12a(x-$\frac{6a}$)
當(dāng)b≤0時,f′(x)>0,在0≤x≤1上恒成立,此時最大值為:f(1)=|2a-b|﹢a;
當(dāng)b>0時,在0≤x≤1上的正負(fù)性不能判斷,f'(x)在區(qū)間[0,1]先負(fù)后可能正,f(x)圖象在[0,1]區(qū)間內(nèi)是凹下去的,所以最大值正好取在區(qū)間的端點,此時最大值為:f(x)max=max{f(0),f(1)}=|2a-b|﹢a;
綜上所述:函數(shù)在0≤x≤1上的最大值為|2a-b|﹢a;
(2)由(1)知:函數(shù)在0≤x≤1上的最大值為|2a-b|﹢a,且函數(shù)在0≤x≤1上的最小值比-(|2a-b|﹢a)要大.
∵-1≤f(x)≤1對x∈[0,1]恒成立,
∴|2a-b|﹢a≤1.
取b為縱軸,a為橫軸,則可行域為:$\left\{\begin{array}{l}{b≥2a}\\{b-a≤1}\end{array}\right.$或 $\left\{\begin{array}{l}{b<2a}\\{3a-b≤1}\end{array}\right.$,目標(biāo)函數(shù)為z=a+b.
作圖如右:
由圖易得:a+b的取值范圍為(-1,3].

點評 本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,考查不等式的證明,綜合性,難度大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x=3${\;}^{ln\frac{3}{2}}$,y=logπ3,則x,y的大小關(guān)系是x>y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)Sn是數(shù)列{an}的前n項和,且a1=$\frac{1}{2}$,點(n,2an+1-an)(n∈N+)在直線y=x上,令bn=an+1-an-1,
(1)證明:數(shù)列{an-n+2}是等比數(shù)列.
(2)求an,bn,Sn
(3)若Sn-2bn>3n-4對n>k(k∈N+)恒成立,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.兩臺電腦共同使用一個寬帶上網(wǎng),各占a%,b%的帶寬,當(dāng)a+b>100時,發(fā)生堵塞,求發(fā)生堵塞的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函敬f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x≥0}\\{3-2x,x<0}\end{array}\right.$,求值:
(2)f(-$\frac{1}{2}$);
(3)f(2-0.5);
(4)f(t-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow$為單位向量,向量$\overrightarrow{a}$=(1,1),且|$\overrightarrow{a}$-$\sqrt{2}$$\overrightarrow$|=$\sqrt{6}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$+ax+cos2x,若f($\frac{π}{3}$)=2,則f(-$\frac{π}{3}$)等于( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集為R,集合A={0,1,2,3,4},B={x|x2-3x+2≤0},則A∩(∁RB)=( 。
A.{0,1,4}B.{1,2,4}C.{0,3,4}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.y=2x+1在(1,2)內(nèi)的平均變化率為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案