拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過(guò)雙曲線的一個(gè)焦點(diǎn),并與
雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為,求拋物線的方程和雙曲線的方程.  

解析試題分析:(1)求拋物線標(biāo)準(zhǔn)方程的常用方法是待定系數(shù)法,其關(guān)鍵是判斷焦點(diǎn)位置,開(kāi)口方向,在方程的類型已經(jīng)確定的前提下,由于標(biāo)準(zhǔn)方程只有一個(gè)參數(shù),只需一個(gè)條件就可以確定拋物線的標(biāo)準(zhǔn)方程;(2)在解決與拋物線性質(zhì)有關(guān)的問(wèn)題時(shí),要注意利用幾何圖形的形象、直觀的特點(diǎn)來(lái)解題,特別是涉及焦點(diǎn)、頂點(diǎn)、準(zhǔn)線的問(wèn)題更是如此;(3)求雙曲線的標(biāo)準(zhǔn)方程的基本方法是待定系數(shù)法,具體過(guò)程是先定形,再定量,即先確定雙曲線標(biāo)準(zhǔn)方程的形式,求出的值.
試題解析:解:由題意可知,拋物線的焦點(diǎn)在x軸,又由于過(guò)點(diǎn),
所以可設(shè)其方程為 
  ∴=2  所以所求的拋物線方程為
所以所求雙曲線的一個(gè)焦點(diǎn)為(1,0),所以c=1,
設(shè)所求的雙曲線方程為 
而點(diǎn)在雙曲線上,所以  
解得
所以所求的雙曲線方程為
考點(diǎn):雙曲線和拋物線的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:+=1(a>b>0),直線l:y=kx+m(k≠0,m≠0),直線l交橢圓C與P,Q兩點(diǎn).
(Ⅰ)若k=1,橢圓C經(jīng)過(guò)點(diǎn)(,1),直線l經(jīng)過(guò)橢圓C的焦點(diǎn)和頂點(diǎn),求橢圓方程;
(Ⅱ)若k=,b=1,且kOP,k,kOQ成等比數(shù)列,求三角形OPQ面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,、分別為橢圓的左、右兩個(gè)焦點(diǎn),為兩個(gè)頂點(diǎn),已知頂點(diǎn)、兩點(diǎn)的距離之和為.
(1)求橢圓的方程;
(2)求橢圓上任意一點(diǎn)到右焦點(diǎn)的距離的最小值;
(3)作的平行線交橢圓兩點(diǎn),求弦長(zhǎng)的最大值,并求取最大值時(shí)的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)、為雙曲線的左、右焦點(diǎn),過(guò)作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且,圓的方程是.
(1)求雙曲線的方程;
(2)過(guò)雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;
(3)過(guò)圓上任意一點(diǎn)作圓的切線交雙曲線兩點(diǎn),中點(diǎn)為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)分別是橢圓的左,右焦點(diǎn).
(1)若是橢圓在第一象限上一點(diǎn),且,求點(diǎn)坐標(biāo);(5分)
(2)設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同兩點(diǎn),且為銳角(其中為原點(diǎn)),求直線的斜率的取值范圍.(7分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xoy中,已知橢圓C:=1(a>b≥1)的離心率e=,且橢圓C上的點(diǎn)到點(diǎn)Q (0,3)的距離最大值為4,過(guò)點(diǎn)M(3,0)的直線交橢圓C于點(diǎn)A、B.
(1)求橢圓C的方程。
(2)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為,且過(guò)點(diǎn)(4,-).
(1)求雙曲線方程;
(2)若點(diǎn)M(3,m)在雙曲線上,求證:·=0;
(3)求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若雙曲線的漸近線方程為,則b等于        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

直線y=x+b與曲線x=恰有一個(gè)交點(diǎn),則實(shí)數(shù)的b的取值范圍是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案