等差數(shù)列{an}的前n項和為Sn,已知a10=30,a20=50.
(1)求通項{an};       
(2)求前20項的和.
考點:數(shù)列的求和,等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件,利用等差數(shù)列的通項公式求出首項和公差,由此能求出等差數(shù)列{an}的通項公式{an}.
(2)由等差數(shù)列的首項和公差,能求出S20
解答: 解:(1)∵等差數(shù)列{an}的前n項和為Sn,a10=30,a20=50.
a1+9d=30
a1+19d=50
,
解得a1=12,d=2,
∴an=12+(n-1)×2=2n+10.
(2)S20=20×12+
20×19
2
×2
=620.
點評:本題考查數(shù)列的通項公式和前n項和的求法,是基礎(chǔ)題,解題時要注意等差數(shù)列的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且sinA=2sinC,b2=ac.
(Ⅰ)求cosB的值.
(Ⅱ)若b=
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)在(-∞,+∞)上為減函數(shù),則f(-3)與f(2)的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}的前n項和為Sn=n2-n,若數(shù)列{bn}滿足an=log3bn,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=0,a2=2,且對任意m,n∈N*都有a2m+1+a2n-1=2m+n-1+2(m-n)2
(1)設(shè)bn=a2n+1-a2n-1(n∈N*)證明:{bn}是等差數(shù)列;
(2)設(shè)cn=(a2n+1-a2n-1)qn-1(q≠0,n∈N*),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+a
x
,且f(1)=2.
(1)證明函數(shù)f(x)是奇函數(shù);
(2)證明函數(shù)f(x)在(1,+∞)上是增函數(shù);
(3)求函數(shù)f(x)在[2,5]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)在[0,+∞)上是單調(diào)遞減函數(shù),f(x)≠0且f(2)=1,求函數(shù)F(x)=f(x)+
1
f(x)
在[0,2]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于點集A={(x,y)|x=m,y=-3x+2,m∈N*},B={(x,y)|x=n,y=a(x2-x+1),a∈Z,n∈N*},是否存在非零整數(shù)a,使得A∩B=∅?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一件工作可以用兩種方法完成,有5人會用第1種方法完成,有4人會用第2種方法完成,從中選1人來完成這件工作,不同選法的總數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案