如圖,在半徑為cm,圓心角為60°的扇形OAB中,點(diǎn)C為弧AB的中點(diǎn),按如圖截出一個(gè)內(nèi)接矩形,則矩形的面積為    cm2
【答案】分析:過(guò)B作BM⊥AO,交FC于點(diǎn)N,交AO于點(diǎn)M,由在半徑為cm,圓心角為60°的扇形OAB中,點(diǎn)C為弧AB的中點(diǎn),知∠DOC=∠BOC=30°,F(xiàn)C=OF.由CD⊥AO,知.在△BMO中,∠BOM=60°,∠BMO=90°,OB=,所以∠OBM=30°,,BM=,.設(shè)FN=x,則BF=2x,則,BF=2x=,由此能求出矩形的面積.
解答:解:過(guò)B作BM⊥AO,交FC于點(diǎn)N,交AO于點(diǎn)M,
∵在半徑為cm,圓心角為60°的扇形OAB中,點(diǎn)C為弧AB的中點(diǎn),
∴∠DOC=∠BOC=30°,
∵CD⊥AO,
,
∵FC∥OA,
∴∠FCO=∠AOC=30°,
∴∠FOC=∠FCO=30°,
∴FC=OF.
在△BMO中,
∵∠BOM=60°,∠BMO=90°,OB=
∴∠OBM=30°,


∴BM==

設(shè)FN=x,則BF=2x,
,
解得,
∴BF=2x=,
,
∴矩形的面積S=
故答案為:
點(diǎn)評(píng):本題考查三角函數(shù)模型的應(yīng)用問(wèn)題,是中檔題.解題時(shí)要認(rèn)真審題,注意垂徑定理、勾股定理、有一個(gè)角是30°角的直角三角形的性質(zhì)的靈活運(yùn)用,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閔行區(qū)二模)如圖,在半徑為20cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中點(diǎn)A、B在直徑上,點(diǎn)C、D在圓周上.
(1)請(qǐng)你在下列兩個(gè)小題中選擇一題作答即可:
①設(shè)∠BOC=θ,矩形ABCD的面積為S=g(θ),求g(θ)的表達(dá)式,并寫出θ的范圍.
②設(shè)BC=x(cm),矩形ABCD的面積為S=f(x),求f(x)的表達(dá)式,并寫出x的范圍.
(2)怎樣截取才能使截得的矩形ABCD的面積最大?并求最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省無(wú)錫市洛社中學(xué)2012屆高三上學(xué)期12月月考數(shù)學(xué)試題 題型:044

如圖,在半徑為30 cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中點(diǎn)A、B在直徑上,點(diǎn)C、D在圓周上.

(1)怎樣截取才能使截得的矩形ABCD的面積最大?并求最大面積;

(2)若將所截得的矩形鋁皮ABCD卷成一個(gè)以AD為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),應(yīng)怎樣截取,才能使做出的圓柱形形罐子體積最大?并求最大體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在半徑為20cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中點(diǎn)A、B在直徑上,點(diǎn)C、D在圓周上.
(1)請(qǐng)你在下列兩個(gè)小題中選擇一題作答即可:
①設(shè)∠BOC=θ,矩形ABCD的面積為S=g(θ),求g(θ)的表達(dá)式,并寫出θ的范圍.
②設(shè)BC=x(cm),矩形ABCD的面積為S=f(x),求f(x)的表達(dá)式,并寫出x的范圍.
(2)怎樣截取才能使截得的矩形ABCD的面積最大?并求最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇模擬題 題型:解答題

如圖,在半徑為30 cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中點(diǎn)A、B在直徑上,點(diǎn)C、D在圓周上,
(1)怎樣截取才能使截得的矩形ABCD的面積最大?并求最大面積;
(2)若將所截得的矩形鋁皮ABCD卷成一個(gè)以AD為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),應(yīng)怎樣截取,才能使做出的圓柱形罐子體積最大?并求最大體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案