若曲線C1:θ=
π
6
(ρ∈R)與曲線C2
x=a+
2
cosθ
y=
2
sinθ
(θ為參數(shù),a為常數(shù),a>0)有兩個交點A、B,且|AB|=2,則實數(shù)a的值為
 
分析:先利用直角坐標與極坐標間的關(guān)系,將曲線C1:θ=
π
6
(ρ∈R)化成直角坐標方程,消去參數(shù)將曲線C2
x=a+
2
cosθ
y=
2
sinθ
(θ為參數(shù),a為常數(shù),a>0)化成普通方程,最后利用直角坐標系中直線與圓的位置關(guān)系求出其a值即可.
解答:解:∵曲線C1:θ=
π
6
(ρ∈R)的直角坐標方程為:
x-
3
y=0.
曲線C2
x=a+
2
cosθ
y=
2
sinθ
普通方程為:
(x-a)2+y2=2.
∵|AB|=2,∴圓心到直線的距離為:1,
|a|
1+3
=1
,a>0.
∴a=2.
故答案為2.
點評:本小題主要考查簡單曲線的極坐標方程、圓的參數(shù)方程、直線與圓的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

①如圖,AC為⊙O的直徑,弦BD⊥AC于點P,PC=2,PA=8,則cos∠ACB的值為
5
5
5
5

②若曲線C1:θ=
π
6
(ρ∈R)與曲線C2
x=a+
2
cosθ
y=
2
sinθ
為參數(shù),a為常數(shù),a>0)有兩個交點A、B,且|AB|=2,則實數(shù)a的值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(在下列兩題中任選一題,若兩題都做,按第①題給分)
①若曲線C1:θ=
π
6
(ρ∈R)與曲線C2
x=a+
2
cosθ
y=
2
sinθ
為參數(shù),a為常數(shù),a>0)有兩個交點A、B,且|AB|=2,則實數(shù)a的值為
2
2

②已知a2+2b2+3c2=6,若存在實數(shù)a,b,c,使得不等式a+2b+3c>|x+1|成立,則實數(shù)x的取值范圍為
{x|-7<x<5}
{x|-7<x<5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•廣州一模)函數(shù)f(x)=2x和g(x)=x3的圖象的示意圖如圖所示,設(shè)兩函數(shù)的圖象交于點A(x1,y1),B(x2,y2),且x1<x2
(Ⅰ)請指出示意圖中曲線C1,C2分別對應(yīng)哪一個函數(shù)?
(Ⅱ)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},指出a,b的值,并說明理由;
(Ⅲ)結(jié)合函數(shù)圖象的示意圖,判斷f(6),g(6),f(2007),g(2007)的大小,并按從小到大的順序排列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•深圳二模)若曲線C1:y2=2px(p>0)的焦點F恰好是曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點,且C1與C2交點的連線過點F,則曲線C2的離心率為( 。

查看答案和解析>>

同步練習冊答案