試題分析:如圖,連結(jié)
,由正方體的性質(zhì)可知
,所以
或其補角為異面直線
與
所成的角,而
為正三角形,所以
,故異面直線
與
所成的角為
.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,邊長為2的正方形ACDE所在的平面與平面ABC垂直,AD與CE的交點為M,
,且AC=BC.
(1)求證:
平面EBC;
(2)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在空間直角坐標系O-xyz中,正四棱錐P-ABCD的側(cè)棱長與底邊長都為
,點M,N分別在PA,BD上,且
.
(1)求證:MN⊥AD;
(2)求MN與平面PAD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)在三棱柱
中,側(cè)面
為矩形,
,
,
為
的中點,
與
交于點
,
側(cè)面
.
(1)證明:
;
(2)若
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在三棱錐
中,
是邊長為2的正三角形,平面
平面
,
,
分別為
的中點.
(1)證明:
;
(2)求銳二面角
的余弦值;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若四棱柱
的底面是邊長為1的正方形,且側(cè)棱垂直于底面,若
與底面
成60°角,則二面角
的平面角的正切值為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在二面角
中,
且
若
,
, 則二面角
的余弦值為________________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在三棱柱
ABC-A1B1C1中,各棱長相等,側(cè)棱垂直于底面,點
D是側(cè)面
BB1C1C的中心,則
AD與平面
BB1C1C所成角的大小是 ( ).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
正三棱錐P—ABC中,CM=2PM,CN=2NB,對于以下結(jié)論:
①二面角B—PA—C大小的取值范圍是(
,π);
②若MN⊥AM,則PC與平面PAB所成角的大小為
;
③過點M與異面直線PA和BC都成
的直線有3條;
④若二面角B—PA—C大小為
,則過點N與平面PAC和平面PAB都成
的直線有3條.
正確的序號是
.
查看答案和解析>>