已知函數(shù)f(x)=x+
4x

(1)證明:f(x)在區(qū)間(0,2)單調(diào)遞減.
(2)求函數(shù)f(x)在(-∞,0)上最大值.
分析:(1)用定義證明f(x)在區(qū)間(0,2)是減函數(shù);
(2)先判定f(x)在(-∞,-2)是增函數(shù),在(-2,0)上是減函數(shù),從而求出最大值.
解答:證明:(1)∵f(x)=x+
4
x
(且x≠0),∴任取x1,x2∈(0,2),且x1<x2,
則f(x1)-f(x2)=(x1+
4
x1
)-(x2+
4
x2
)=(x1-x2)+(
4
x1
-
4
x2
)=
(x1-x2)(x1x2-4)
x1x2

∵0<x1<x2<2,∴x1-x2<0,0<x1x2<4,∴x1x2-4<0,
∴f(x1)-f(x2)>0,
即f(x1)>f(x2),
∴f(x)是(0,2)上的減函數(shù);
(2)∵f(x)=x+
4
x
(且x≠0),
∴f,(x)=1-
4
x2
,令f,(x)=0,則x=±2;
當(dāng)x<-2時,f,(x)>0,f(x)是增函數(shù);當(dāng)0>x>-2時,f,(x)<0,f(x)是減函數(shù);
∴當(dāng)x=-2時,f(x)在(-∞,0)上有最大值f(x)max=-2+
4
-2
=-4.
點(diǎn)評:本題考查了用定義或?qū)?shù)證明函數(shù)的單調(diào)性,以及利用單調(diào)性求函數(shù)最值的問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案