【題目】已知函數(shù).
(1)當(dāng),求的最值;
(2)若有兩個不同的極值點,求的取值范圍.
【答案】(1),無最大值;(2)
【解析】分析:(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的極值即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍求出函數(shù)的單調(diào)區(qū)間,從而求得的范圍.
詳解:(1)當(dāng)時,,,,
則在單調(diào)遞減,在單調(diào)遞增,
則,無最大值.
(2).
解法一:有兩個極值點有兩個不等實根有兩個不等的實根.
記,則.
所以,.
則在上單調(diào)遞增,上單調(diào)遞減,,
,且當(dāng)時,,如圖所示:
∴即.
解法二:依題意得有兩個不等實根.
記,則有兩個不等實根,,.
①當(dāng)時,,在上遞增,至多一個實根,不符合要求;
②當(dāng)時,在遞增,遞減,,
又當(dāng)時,,當(dāng)時,,故要使有兩個實根.
則,得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》(1261年)一書中,用如圖所示的三角形,解釋二項和的乘方規(guī)律.在歐洲直到1623年以后,法國數(shù)學(xué)家布萊士帕斯卡的著作(1655年)介紹了這個三角形,近年來,國外也逐漸承認這項成果屬于中國,所以有些書上稱這是“中國三角形”,如圖.17世紀德國數(shù)學(xué)家萊布尼茨發(fā)現(xiàn)了“萊布尼茨三角形”,如圖.在楊輝三角中,相鄰兩行滿足關(guān)系式:,其 中是行數(shù),.請類比上式,在萊布尼茨三角形中相鄰兩行滿足的關(guān)系式是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中點,已知AB=2,AD=2 ,PA=2,求:
(1)三角形PCD的面積;
(2)異面直線BC與AE所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上為增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個不同的極值點,記作,,且,證明:(為自然對數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是公比不為1的等比數(shù)列,其前n項和為Sn , 且a5 , a3 , a4成等差數(shù)列.
(1)求數(shù)列{an}的公比;
(2)證明:對任意k∈N+ , Sk+2 , Sk , Sk+1成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題方程表示焦點在軸上的橢圓,命題雙曲線的離心率,若“”為假命題,“”為真命題,則的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保護環(huán)境,某單位采用新工藝,把二氧化硅轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月都有處理量,且處理量最多不超過噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:,且每處理一噸二氧化硅得到可利用的化工產(chǎn)品價值為元.
(1)設(shè)該單位每月獲利為(元),試將表示月處理(噸)的函數(shù);
(2)若要保證該單位每月不虧損,則每月處理量應(yīng)控制在什么范圍?
(3)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個結(jié)論:
①平行于同一直線的兩條直線互相平行;
②垂直于同一平面的兩個平面互相平行;
③若,是兩個平面;,是異面直線;且,,,,則;
④若三棱錐中,,,則點在平面內(nèi)的射影是的垂心;
其中錯誤結(jié)論的序號為__________.(要求填上所有錯誤結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com