1.已知冪函數(shù)f(x)=xm-1(m∈Z,其中Z為整數(shù)集)是奇函數(shù).則“m=4”是“f(x)在(0,+∞)上為單調(diào)遞增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

分析 “m=4”⇒“f(x)在(0,+∞)上為單調(diào)遞增函數(shù)”,“f(x)在(0,+∞)上為單調(diào)遞增函數(shù)”⇒“m-1是正奇數(shù)”.

解答 解:∵冪函數(shù)f(x)=xm-1(m∈Z,其中Z為整數(shù)集)是奇函數(shù),
∴m-1是奇數(shù),
m=4時(shí),f(x)=x3,此時(shí)f(x)在(0,+∞)上為單調(diào)遞增函數(shù),
當(dāng)f(x)=xm-1在(0,+∞)上為單調(diào)遞增函數(shù)時(shí),
m-1是正奇數(shù),
∴“m=4”是“f(x)在(0,+∞)上為單調(diào)遞增函數(shù)”的充分不必要條件.
故選:A.

點(diǎn)評 本題考查充分條件、必要條件、充要條件、不充分不必要條件的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意冪函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.定義在(-1,1)上的函數(shù)f(x)滿足f(-x)=-f(x),且f(1-a)+f(1-2a)<0.若f(x)是(-1,1)上的減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f (x) 的部分對應(yīng)值如表所示.?dāng)?shù)列{an}滿足a1=1,且對任意n∈N*,點(diǎn)(an,an+1)都在函數(shù)f(x)的圖象上,則a2016的值為( 。
x1234
f(x)3124
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知關(guān)于點(diǎn)(x,y)的不等式組$\left\{\begin{array}{l}{y≤1}\\{2x-y+2≤0}\\{4x-y+5≥0}\end{array}\right.$表示的平面區(qū)域?yàn)镈,則D內(nèi)使得z=x2+y2取得最大值和最小值時(shí)的最優(yōu)解組成的集合為{($-\frac{3}{2},-1$),($-\frac{4}{5},\frac{2}{5}$)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=2sin({x-\frac{π}{6}}),x∈R$,若f(x)≥1,則x的取值范圍是( 。
A.$\left\{{x|2kπ+\frac{π}{3}≤x≤2kπ+π,k∈Z}\right\}$B.$\left\{{x|2kπ+\frac{π}{3}≤x≤2kπ+\frac{5π}{6},k∈Z}\right\}$
C.$\left\{{x|2kπ+\frac{π}{6}≤x≤2kπ+\frac{5π}{6},k∈Z}\right\}$D.$\left\{{x|kπ+\frac{π}{6}≤x≤kπ+\frac{5π}{6},k∈Z}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若方程7x2-(m+13)x-m-2=0的一個(gè)根在區(qū)間(0,1)上,另一根在區(qū)間(1,2)上,則實(shí)數(shù)m的取值范圍為(-4,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).
(1)若m=2,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(3,4),若($\overrightarrow{a}$-$\overrightarrow$)∥(2$\overrightarrow{a}$+k$\overrightarrow$),則實(shí)數(shù)k的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=$\frac{a}{3}$x3+cx(a,c∈R,a≠0).若a=-3,函數(shù)y=f(x)在[-2,2]的值域?yàn)閇-2,2],求函數(shù)y=f(x)的零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案