14.橢圓$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{11}$=1的焦點坐標(biāo)為( 。
A.(±3$\sqrt{2}$,0)B.(±2,0)C.(0,±3$\sqrt{2}$)D.(0,±2)

分析 由a2=11,b2=7,得c=$\sqrt{11-7}=2$,由此能求出焦點坐標(biāo).

解答 解:∵橢圓$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{11}$=1中,
a2=11,b2=7,
∴c=$\sqrt{11-7}=2$,
∴焦點坐標(biāo)為(0,±2).
故選:D.

點評 本題考查橢圓的焦點坐標(biāo)的求法,是基礎(chǔ)題,解題時要認真審題,注意橢圓性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C的對邊是a,b,c,已知a=$\sqrt{3}$c,cos2B=$\frac{1}{2}$,B為鈍角.
(1)求B;
(2)若b=$\sqrt{7}$,求AC邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點F(-c,0)和虛軸端點E的直線交雙曲線的右支于點P,若E為線段FP的中點,則該雙曲線的離心率為(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖的程序框圖.輸出的x的值是( 。
A.2B.14C.11D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某模具長新接一批新模型制作的訂單,為給訂購方回復(fù)出貨時間,需確定制作該批模型所花費的時間,為此進行了5次試驗,收集數(shù)據(jù)如下:
 制作模型數(shù)x(個) 10 20 30 40 50
 花費時間y(分鐘) 64 69 75 82 90
(1)請根據(jù)以上數(shù)據(jù),求關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)若要制作60個這樣的模型,請根據(jù)(1)中所求的回歸方程預(yù)測所花費的時間.
(注:回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中斜率和截距最小二乘估計公式分別為$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,參考數(shù)據(jù):$\sum_{i=1}^{5}$xiyi=12050,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=5500)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.直線y=2b與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左支、右支分別交于B,C兩點,A為右頂點,O為坐標(biāo)原點,若∠AOC=∠BOC,則該雙曲線的離心率為$\frac{\sqrt{19}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.命題“?x∈R,tanx≥0”的否定是?x∈R,tanx<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)Sn為數(shù)列{an}的前n項和,a3=6且Sn+1=3Sn,則a1+a5等于( 。
A.12B.$\frac{164}{3}$C.55D.$\frac{170}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.雙曲線$\frac{x^2}{3}-{y^2}=1$的一個焦點坐標(biāo)為(  )
A.$(\sqrt{2},0)$B.$(0,\sqrt{2})$C.(2,0)D.(0,2)

查看答案和解析>>

同步練習(xí)冊答案