4.雙曲線$\frac{x^2}{3}-{y^2}=1$的一個(gè)焦點(diǎn)坐標(biāo)為(  )
A.$(\sqrt{2},0)$B.$(0,\sqrt{2})$C.(2,0)D.(0,2)

分析 根據(jù)雙曲線的方程和性質(zhì)即可得到結(jié)論.

解答 解:由雙曲線$\frac{x^2}{3}-{y^2}=1$得a2=3,b2=1,
則c2=a2+b2=4,
則c=2,
故雙曲線$\frac{x^2}{3}-{y^2}=1$的一個(gè)焦點(diǎn)坐標(biāo)為(2,0),
故選:C

點(diǎn)評(píng) 本題主要考查雙曲線的性質(zhì)和方程,根據(jù)a,b,c之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.橢圓$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{11}$=1的焦點(diǎn)坐標(biāo)為( 。
A.(±3$\sqrt{2}$,0)B.(±2,0)C.(0,±3$\sqrt{2}$)D.(0,±2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不等式3+5x-2x2>0的解集為( 。
A.(-3,$\frac{1}{2}$)B.(-∞,-3)∪($\frac{1}{2}$,+∞)C.(-$\frac{1}{2}$,3)D.(-∞,-$\frac{1}{2}$)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若兩條直線2x-y=0與ax-2y-1=0互相垂直,則實(shí)數(shù)a的值為( 。
A.-4B.-1C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若曲線F(x,y)=0上的兩點(diǎn)P1(x1,y1),P2(x2,y2)滿足x1≤x2且y1≥y2,則稱這兩點(diǎn)為曲線F(x,y)=0上的一對(duì)“雙胞點(diǎn)”.下列曲線中:
①$\frac{x^2}{20}+\frac{y^2}{16}=1(xy>0)$;  
②$\frac{x^2}{20}-\frac{y^2}{16}=1(xy>0)$;
③y2=4x;             
④|x|+|y|=1.
存在“雙胞點(diǎn)”的曲線序號(hào)是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.用一個(gè)平面截正方體和正四面體,給出下列結(jié)論:
①正方體的截面不可能是直角三角形;
②正四面體的截面不可能是直角三角形;
③正方體的截面可能是直角梯形;
④若正四面體的截面是梯形,則一定是等腰梯形.
其中,所有正確結(jié)論的序號(hào)是( 。
A.②③B.①②④C.①③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知F1為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦點(diǎn),過F1的直線l與橢圓交于兩點(diǎn)P,Q.
(Ⅰ)若直線l的傾斜角為45°,求|PQ|;
(Ⅱ)設(shè)直線l的斜率為k(k≠0),點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P′,點(diǎn)Q關(guān)于x軸的對(duì)稱點(diǎn)為Q′,P′Q′所在直線的斜率為k′.若|k′|=2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系xoy中,A,B是圓x2+y2=4上的兩個(gè)動(dòng)點(diǎn),且AB=2,則線段AB中點(diǎn)M的軌跡方程為x2+y2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若一圓弧長(zhǎng)等于它所在圓的內(nèi)接正三角形的邊長(zhǎng),則該弧所對(duì)的圓心角弧度數(shù)為( 。
A.$\frac{π}{3}$B.$\sqrt{3}$C.$\frac{2π}{3}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案