若雙曲線的漸近線方程為,它的一個焦點是,則雙曲線的標(biāo)準方程是           .

試題分析:因為,雙曲線的漸近線方程為,它的一個焦點是,所以焦點在x軸上,c=,,解得,a=1,b=3,雙曲線的標(biāo)準方程是。
點評:簡單題,涉及求雙曲線標(biāo)準方程問題,往往利用a,b,c,e的關(guān)系,建立方程組。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓+=1(a>b>0)上一點A關(guān)于原點的對稱點為B, F為其右焦點, 若AF⊥BF, 設(shè)∠ABF=, 且∈[,], 則該橢圓離心率的取值范圍為            (       )
A.[,1 ) B.[,]C.[, 1) D.[,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓的方程為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是橢圓的左、右焦點,O為坐標(biāo)原點,點P在橢圓上,線段與y軸的交點M滿足
(Ⅰ) 求橢圓的標(biāo)準方程;
(Ⅱ) 圓O是以為直徑的圓,直線與圓相切,并與橢圓交于不同的兩點,當(dāng),且滿足時,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從雙曲線的左焦點引圓的切線,切點為,延長交雙曲線右支于點,若為線段的中點,為坐標(biāo)原點,則的大小關(guān)系為(   )
A.B.
C.D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準方程;
(2)在(1)的條件下,設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是雙曲線的左、右焦點,過且垂直于軸的直線與雙曲線交于兩點,若△是銳角三角形,則該雙曲線離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,已知△ABC頂點,頂點B在橢圓上,則      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線l:x=my+1過橢圓的右焦點F,拋物線:的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點,點A、F、B在直線g:x=4上的射影依次為點D、K、E.(1)橢圓C的方程;(2)直線l交y軸于點M,且,當(dāng)m變化時,探求λ12的值是否為定值?若是,求出λ12的值,否則,說明理由;(3)接AE、BD,試證明當(dāng)m變化時,直線AE與BD相交于定點

查看答案和解析>>

同步練習(xí)冊答案