精英家教網 > 高中數學 > 題目詳情

在數列中,如果存在常數,使得對于任意正整數均成立,那么就稱數列為周期數列,其中叫做數列的周期. 已知周期數列滿足,若,當數列的周期為時,則數列的前2015項的和為(    )

A.1344            B.1343           C.1342           D. 1341

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
1a-x
-1
(其中a為常數,x≠a).利用函數y=f(x)構造一個數列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構造過程中,如果xi(i=1,2,3,…)在定義域中,那么構造數列的過程繼續(xù)下去;如果xi不在定義域中,那么構造數列的過程就停止.
(Ⅰ)當a=1且x1=-1時,求數列{xn}的通項公式;
(Ⅱ)如果可以用上述方法構造出一個常數列,求a的取值范圍;
(Ⅲ)是否存在實數a,使得取定義域中的任一實數值作為x1,都可用上述方法構造出一個無窮數列{xn}?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出函數封閉的定義:若對于定義域D內的任意一個自變量x0,都有函數值f(x0)∈D,稱函數y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數g(x)=2x-1是否在D1上封閉,并說明理由;
(2)若定義域D2=(1,5],是否存在實數a,使得函數f(x)=
5x-ax+2
在D2上封閉?若存在,求出a的取值范圍;若不存在,請說明理由.
(3)利用(2)中函數,構造一個數列{xn},方法如下:對于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構造數列的過程中,如果xi(i=1,2,3,4…)在定義域中,構造數列的過程將繼續(xù)下去;如果xi不在定義域中,則構造數列的過程停止.
①如果可以用上述方法構造出一個無窮常數列{xn},求實數a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構造出一個無窮數列{xn},求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•石景山區(qū)一模)已知函數y=f(x)對于任意θ≠
2
(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a為常數).
(Ⅰ)求函數y=f(x)的解析式;
(Ⅱ)利用函數y=f(x)構造一個數列,方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構造過程中,如果xi(i=1,2,3,…)在定義域中,那么構造數列的過程繼續(xù)下去;如果xi不在定義域中,那么構造數列的過程就停止.
(ⅰ)如果可以用上述方法構造出一個常數列,求a的取值范圍;
(ⅱ)是否存在一個實數a,使得取定義域中的任一值作為x1,都可用上述方法構造出一個無窮數列{xn}?若存在,求出a的值;若不存在,請說明理由;
(ⅲ)當a=1時,若x1=-1,求數列{xn}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年東城區(qū)二模理)(14分)

已知函數(其中為常數,).利用函數構造一個數列,方法如下:

對于給定的定義域中的,令,,…,,…

在上述構造過程中,如果=1,2,3,…)在定義域中,那么構造數列的過程繼續(xù)下去;如果不在定義域中,那么構造數列的過程就停止.

 。á瘢┊時,求數列的通項公式;

    (Ⅱ)如果可以用上述方法構造出一個常數列,求的取值范圍;

   (Ⅲ)是否存在實數,使得取定義域中的任一實數值作為,都可用上述方法構造出一個無窮數列  ?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)

已知函數對于任意),都有式子成立(其中為常數).

(Ⅰ)求函數的解析式;

(Ⅱ)利用函數構造一個數列,方法如下:

對于給定的定義域中的,令,…,,…

在上述構造過程中,如果=1,2,3,…)在定義域中,那么構造數列的過程繼續(xù)下去;如果不在定義域中,那么構造數列的過程就停止.

(。┤绻梢杂蒙鲜龇椒嬙斐鲆粋常數列,求的取值范圍;

(ⅱ)是否存在一個實數,使得取定義域中的任一值作為,都可用上述方法構造出一個無窮數列?若存在,求出的值;若不存在,請說明理由;

(ⅲ)當時,若,求數列的通項公式.

查看答案和解析>>

同步練習冊答案