2.已知兩定點F1(-3,0),F(xiàn)2(3,0),在滿足下列條件的平面內(nèi)動點P的軌跡中,是雙曲線的是( 。
A.||PF1|-|PF2||=5B.||PF1|-|PF2||=6C.|PF1|-|PF2|=7D.||PF1|-|PF2||=0

分析 先求出|F1F2|=6,由雙曲線定義得||PF1|-|PF2||∈(0,6).

解答 解:∵兩定點F1(-3,0),F(xiàn)2(3,0),
∴|F1F2|=6,
由雙曲線定義得||PF1|-|PF2||∈(0,6),
∴四個選項的平面內(nèi)動點P的軌跡中,是雙曲線的是A.
故選:A.

點評 本查雙曲線的判斷,是基礎題,解題時要認真審題,注意雙曲線性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.某化工企業(yè)計劃2015年底投入64萬元,購入一套污水處理設備.該設備每年的運轉(zhuǎn)費用是1.5萬元,此外每年都要花費一定的維護費,第一年的維護費為2萬元,由于設備老化,以后每年的維護費都比上一年增加2萬元.
(1)設該企業(yè)使用該設備x年的年平均污水處理費用為y(萬元),求y=f(x)的解析式;
(2)為使該企業(yè)的年平均污水處理費用最低,問該企業(yè)幾年后需要重新更換新的污水處理設備?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,已知長方體的棱AB=BC=5,AA1=$\sqrt{5}$,則BC1與A1D1所成角的正切值是$\frac{\sqrt{5}}{5}$,BC1與B1D1所成角的余弦值是$\frac{\sqrt{15}}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(sinβ,cosβ),α∈(0,π),β(0,2π),tan$\frac{β}{2}$=$\frac{1}{2}$,$\overrightarrow{a}•\overrightarrow=\frac{5}{13}$,
求(1)sinβ,cosβ(2)sinα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知定義在R上的函數(shù)f(x)滿足①圖象關于(1,0)點對稱;②f(-1+x)=f(-1-x);③x∈[-1,1]時,f(x)=$\left\{\begin{array}{l}{1{-x}^{2},x∈[-1,0]}\\{cos\frac{π}{2}x,x∈(0,1]}\end{array}\right.$,則函數(shù)y=f(x)-($\frac{1}{2}$)|x|在區(qū)間[-3,3]上的零點個數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為不共線向量,$\overrightarrow{OA}$=k$\overrightarrow{{e}_{1}}$+12$\overrightarrow{{e}_{2}}$,$\overrightarrow{OB}$=4$\overrightarrow{{e}_{1}}$+5$\overrightarrow{{e}_{2}}$,$\overrightarrow{OC}$=-k$\overrightarrow{{e}_{1}}$-10$\overrightarrow{{e}_{2}}$,且A、B、C三點共線,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知復數(shù)z1,z2滿足|z1|=1,|z2|=2,求|z1-2z2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設a、b∈R,方程x2+ax+b=0的兩個復根與原點構成正三角形,求實數(shù)a、b之間的關系及b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.兩平行直線l1,l2分別過A(1,0),B(0,5).若l1與l2的距離為5,則l1與l2的方程分別為l1:y=0,l2:y=5.

查看答案和解析>>

同步練習冊答案