已知向量
a
=(-cosα,1+sinα)
b
=(2sin2
α
2
,sinα)

(Ⅰ)若|
a
+
b
|=
3
,求sin2α的值;
(Ⅱ)設
c
=(cosα,2)
,求(
a
+
c
)•
b
的取值范圍.
分析:(I)由已知中向量
a
=(-cosα,1+sinα)
,
b
=(2sin2
α
2
,sinα)
,我們易求出
a
+
b
,由|
a
+
b
|=
3
,我們結(jié)合倍角公式,我們易求出sin2α的值;
(II)又由
c
=(cosα,2)
,代入(
a
+
c
)•
b
我們可以求出(
a
+
c
)•
b
的表達式,然后根據(jù)三角函數(shù)的性質(zhì),我們易得(
a
+
c
)•
b
的取值范圍.
解答:解:(Ⅰ)∵
a
+
b
=(1-2cosa,1+2sina)
|
a
+
b
|=
6+4(sina-cosa)
(3分)
∴sina-cosa=-
3
4
∴sin2a=
7
16
(5分)
(Ⅱ)
a
+
c
=(0,sina+3),
∴(
a
+
c
)=
b
=sin2a+3sina=(sina+
3
2
2-
9
4
(8分)
又sina∈[-1,1],
(
a
+
c
)-
b
的取值范圍為[-2,4](10分)
點評:本題考查的知識點是平面向量的數(shù)量積的運算,平面向量的坐標運算,三角函數(shù)的倍角公式,三角函數(shù)的性質(zhì),其中利用平面向量的模的計算公式,及平面向量的數(shù)量積運算公式,將已知條件進行轉(zhuǎn)化是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列說法中,正確的個數(shù)為( 。
(1)
AB
+
MB
+
BC
+
OM
+
CO
=
AB

(2)已知向量
a
=(6,2)與
b
=(-3,k)的夾角是鈍角,則k的取值范圍是k<0
(3)若向量
e1
=(2,-3),
e2
=(
1
2
,-
3
4
)
能作為平面內(nèi)所有向量的一組基底
(4)若
a
b
,則
a
b
上的投影為|
a
|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1

①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標方程;
②設點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列各式:
AB
+
BC
+
CA
;            
AB
+
MB
+
BO
+
OM

AB
-
AC
+
BD
-
CD

OA
+
OC
+
BO
+
CO

其中結(jié)果為零向量的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量
m
=(2a-c,b)與向量
n
=(cosB,-cosC)互相垂直.
(1)求角B的大小;
(2)求函數(shù)y=2sin2C+cos(B-2C)的值域;
(3)若AB邊上的中線CO=2,動點P滿足
AP
=sin2θ•
AO
+cos2θ•
AC
(θ∈R)
,求(
PA
+
PB
)•
PC
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法中,正確的個數(shù)為( 。
(1)
AB
+
MB
+
BC
+
OM
+
CO
=
AB

(2)已知向量
a
=(6,2)與
b
=(-3,k)的夾角是鈍角,則k的取值范圍是k<0
(3)若向量
e1
=(2,-3),
e2
=(
1
2
,-
3
4
)
能作為平面內(nèi)所有向量的一組基底
(4)若
a
b
,則
a
b
上的投影為|
a
|
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案