已知點直線AM,BM相交于點M,且.
(1)求點M的軌跡的方程;
(2)過定點(0,1)作直線PQ與曲線C交于P,Q兩點,且,求直線PQ的方程.

(1); (2).

解析試題分析:(1)先設(shè)出點的坐標,根據(jù)兩點間的斜率公式求出,代入已知條件中,化簡整理得,限制條件一定要有;(2)分直線的斜率存在與不存在兩種情況進行討論,當斜率存在時,設(shè)出直線方程及與曲線的交點坐標,聯(lián)立方程由方程的根與系數(shù)的關(guān)系求得,,代入、兩點間的距離公式并化簡,結(jié)合已知條件求得的值,代入所設(shè)的直線方程即可.
試題解析:(1)解:設(shè),             ..1分
,          .3分
,                           .4分
.                  .6分 (條件1分)
(2)當直線的斜率不存在時,即是橢圓的長軸,其長為,顯然不合,
所以直線的斜率存在,                  7分
設(shè)直線的方程是,,
,            .8分
聯(lián)立,消去,          9分
,∴,         ..10分
,           .11分

,             ..12分
,∴,即,          .13分
所以直線PQ的方程是.            ..14分
考點:1.直線的斜率;2.方程的根與系數(shù)的關(guān)系;3.分類討論思想;4.兩點間的距離公式;5.直線方程;6.軌跡方程

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是定義域為的單調(diào)減函數(shù),且是奇函數(shù),當時,
(1)求的解析式;(2)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義域為的函數(shù)是奇函數(shù).
(Ⅰ)求值;
(Ⅱ)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(Ⅲ)設(shè)關(guān)于的函數(shù)有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

新晨投資公司擬投資開發(fā)某項新產(chǎn)品,市場評估能獲得萬元的投資收益.現(xiàn)公司準備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不低于萬元,同時不超過投資收益的.
(1)設(shè)獎勵方案的函數(shù)模型為,試用數(shù)學語言表述公司對獎勵方案的函數(shù)模型的基本要求.
(2)下面是公司預設(shè)的兩個獎勵方案的函數(shù)模型:
;    ②
試分別分析這兩個函數(shù)模型是否符合公司要求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)上的最大值與最小值之和為,記.
(1)求的值;
(2)證明;
(3)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的值;
(2)判斷上的單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù),滿足,且方程有兩個相等的實根.
(1)求函數(shù)的解析式;
(2)當時,求函數(shù)的最小值的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是定義在上的奇函數(shù),且當時,
(Ⅰ)求的表達式;
(Ⅱ)判斷并證明函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若定義在上的函數(shù)同時滿足:①;②;③若,且,則成立.則稱函數(shù)為“夢函數(shù)”.
(1)試驗證在區(qū)間上是否為“夢函數(shù)”;
(2)若函數(shù)為“夢函數(shù)”,求的最值.

查看答案和解析>>

同步練習冊答案