某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨(dú)立地對每位大學(xué)生的創(chuàng)業(yè)方案進(jìn)行評審.假設(shè)評審結(jié)果為“支持”或“不支持”的概率都是
12
.若某人獲得兩個(gè)“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個(gè)“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助,令ξ表示該公司的資助總額.求出ξ數(shù)學(xué)期望Eξ.
分析:根據(jù)題意寫出變量的可能取值,結(jié)合每一個(gè)變量對應(yīng)的事件,寫出變量對應(yīng)的概率,即離散型變量的分布列,根據(jù)分布列寫出變量的期望值.
解答:解:由題意知ξ表示該公司的資助總額,ξ的所有取值為0,5,10,15,20,25,30.
ξ的所有取值為0時(shí),表示沒有人受到資助,則每一個(gè)人都不受到支持,P(ξ=0)=(
1
2
)
6
=
1
64

P(ξ=5)=
3
32
,P(ξ=10)=
15
64
,P(ξ=15)=
5
16
,
P(ξ=20)=
15
64
,P(ξ=25)=
3
32
,P(ξ=30)=
1
64

∴Eξ=5×
3
32
+10×
15
64
+15×
5
16
+20×
15
64
+25×
3
32
+30×
1
64
=15.
點(diǎn)評:本題考查離散型隨機(jī)變量的分布列和期望,求離散型隨機(jī)變量的分布列和期望是近年來理科高考必出的一個(gè)問題,題目做起來不難,運(yùn)算量也不大,只要注意解題格式就問題不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨(dú)立地對每位大學(xué)生的創(chuàng)業(yè)方案進(jìn)行評審、假設(shè)評審結(jié)果為“支持”或“不支持”的概率都是
12
、若某人獲得兩個(gè)“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個(gè)“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助、求:
(1)該公司的資助總額為零的概率;
(2)該公司的資助總額超過15萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•江西)某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨(dú)立地對每位大學(xué)生的創(chuàng)業(yè)方案進(jìn)行評審.假設(shè)評審結(jié)果為“支持”或“不支持”的概率都是
12
.若某人獲得兩個(gè)“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個(gè)“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助,令ξ表示該公司的資助總額.
(1)寫出ξ的分布列; 
(2)求數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009江西卷文)(本小題滿分12分)

某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨(dú)立地對每位大學(xué)生的創(chuàng)業(yè)方案進(jìn)行評審.假設(shè)評審結(jié)果為“支持”或“不支持”的概率都是.若某人獲得兩個(gè)“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個(gè)“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助.求:

(1) 該公司的資助總額為零的概率;

(2)該公司的資助總額超過15萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009江西卷理)(本小題滿分12分)

某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨(dú)立地對每位大學(xué)生的創(chuàng)業(yè)方案進(jìn)行評審.假設(shè)評審結(jié)果為“支持”或“不支持”的概率都是.若某人獲得兩個(gè)“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個(gè)“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助,令表示該公司的資助總額.

 (1) 寫出的分布列; (2) 求數(shù)學(xué)期望.          

查看答案和解析>>

同步練習(xí)冊答案