3.下列說(shuō)法正確的是(  )
A.三角形的內(nèi)角是第一象限角或第二象限角
B.第一象限的角是銳角
C.第二象限的角比第一象限的角大
D.角α是第四象限角的充要條件是$2kπ-\frac{π}{2}<α<2kπ(k∈z)$

分析 直接利用角的范圍判斷四個(gè)選項(xiàng)即可.

解答 解:對(duì)于A,三角形的內(nèi)角是第一象限角或第二象限角,因?yàn)槿切蔚膬?nèi)角和是180°,角可以是銳角,直角或鈍角,所以A不正確;
對(duì)于B,第一象限角是銳角,顯然不正確,利用390°是第一象限角,但不是銳角,所以B不正確;
對(duì)于C,第二象限的角比第一象限的角大,利用390°是第一象限角,120°是第二象限角,所以C不正確;
對(duì)于D,角α是第四象限角則有2kπ-$\frac{π}{2}$<α<2kπ(k∈Z),顯然D正確.
故選:D.

點(diǎn)評(píng) 本題考查角的范圍,基本概念的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在橢圓的標(biāo)準(zhǔn)方程中,a=6,b=$\sqrt{35}$,則橢圓的標(biāo)準(zhǔn)方程是(  )
A.$\frac{x^2}{36}+\frac{y^2}{35}=1$B.$\frac{y^2}{36}+\frac{x^2}{35}=1$C.$\frac{x^2}{36}+{y^2}=1$D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.二項(xiàng)式${({2\sqrt{x}-\frac{a}{{\sqrt{x}}}})^n}$的展開(kāi)式中所有二項(xiàng)式系數(shù)和為64,則展開(kāi)式中的常數(shù)項(xiàng)為-160,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,D為BC的中點(diǎn),若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow$,則$\overrightarrow{AD}$為( 。
A.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$B.$\frac{1}{2}$$\overrightarrow$-$\overrightarrow{a}$C.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$D.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知a>b>0,則$\frac{a}$與$\frac{a+1}{b+1}$的大小是$\frac{a}$>$\frac{a+1}{b+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知0<α<$\frac{π}{2}$,且cos($\frac{π}{2}+α$)=$-\frac{\sqrt{2}}{2}$,則sinα=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.為了參加某數(shù)學(xué)競(jìng)賽,某高級(jí)中學(xué)對(duì)高二年級(jí)理科、文科兩個(gè)數(shù)學(xué)興趣小組的同學(xué)進(jìn)行了賽前模擬測(cè)試,成績(jī)(單位:分)記錄如下.
理科:79,81,81,79,94,92,85,89
文科:94,80,90,81,73,84,90,80
(1)畫(huà)出理科、文科兩組同學(xué)成績(jī)的莖葉圖;
(2)計(jì)算理科、文科兩組同學(xué)成績(jī)的平均數(shù)和方差,并從統(tǒng)計(jì)學(xué)的角度分析,哪組同學(xué)在此次模擬測(cè)試中發(fā)揮比較好;(參考公式:樣本數(shù)據(jù)x1,x2,…,xn的方差:${s^2}=\frac{1}{n}[{({x_1}-\overline x)^2}+{({x_2}-\overline x)^2}+…+{({x_n}-\overline x)^2}]$,其中$\overline x$為樣本平均數(shù))
(3)若在成績(jī)不低于90分的同學(xué)中隨機(jī)抽出3人進(jìn)行培訓(xùn),求抽出的3人中既有理科組同學(xué)又有文科組同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}(-\frac{x}{2}),x≤-1\\-\frac{1}{3}{x^2}+\frac{4}{3}x+\frac{2}{3},x>-1\end{array}\right.$,若f(x)在區(qū)間[m,4]上的值域?yàn)閇-1,2],則實(shí)數(shù)m的取值范圍為[-8,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.甲、乙、丙3名學(xué)生排成一排,其中甲、乙兩人站在一起的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案