17.?dāng)?shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N*,則an=n2

分析 化簡(jiǎn)可得$\frac{{a}_{n+1}}{n+1}$=$\frac{{a}_{n}}{n}$+1,從而證明{$\frac{{a}_{n}}{n}$}是以1為首項(xiàng),1為公差的等差數(shù)列,從而求得.

解答 解:∵nan+1=(n+1)an+n(n+1),
∴$\frac{{a}_{n+1}}{n+1}$=$\frac{{a}_{n}}{n}$+1,
∴$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=1,
又∵$\frac{{a}_{1}}{1}$=1,
∴{$\frac{{a}_{n}}{n}$}是以1為首項(xiàng),1為公差的等差數(shù)列,
∴$\frac{{a}_{n}}{n}$=1+(n-1)1=n,
故an=n2,
故答案為:n2

點(diǎn)評(píng) 本題考查了等差數(shù)列的判斷與應(yīng)用,同時(shí)考查了構(gòu)造法的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,已知三棱柱ABC-A1BlC1中,點(diǎn)D是AB的中點(diǎn),平面A1DC分此棱柱成兩部分,多面體A1ADC與多面體A1B1C1DBC體積的比值為1:5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若P=|x|x2-2x-3<0},Q={x|x>a},且P∩Q=P,則實(shí)數(shù)a的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列敘述正確的個(gè)數(shù)是( 。
①若命題p:?x0∈R,x02-x0+1=0,則¬p:?x∈R,x2-x+1>0;
②已知向量$\overrightarrow{a}$,$\overrightarrow$,則$\overrightarrow{a}$•$\overrightarrow$<0是$\overrightarrow{a}$與$\overrightarrow$的夾角為鈍角的充要條件;
③已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤2)=0.4,則P(ξ>2)=0.3;
④在區(qū)間[0,π]上隨機(jī)取一個(gè)數(shù)x,則事件“tanx•cosx≥$\frac{1}{2}$”發(fā)生的概率為$\frac{5}{6}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)全集U=R,已知集合A={-2,-1,0,1,2,3},B={x|$\frac{3}{x-1}$+1≥0},則集合A∩∁UB=(  )
A.{-1,0,1}B.{-1,0}C.{-2,-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)命題p:函數(shù)y=-xsinx的圖象關(guān)于原點(diǎn)對(duì)稱,
命題q:函數(shù)y=-xsinx在區(qū)間[0,$\frac{π}{2}$]上單調(diào)遞減,
則下列命題中正確的是( 。
A.p∧qB.¬p∧qC.p∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某火鍋店為了了解氣溫對(duì)營(yíng)業(yè)額的影響,隨機(jī)記錄了該店1月份中5天的日營(yíng)業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如表:
x258911
y1210887
(Ⅰ)求y關(guān)于x的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$
(Ⅱ)判定y與x之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額
附:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知tanα=-3,求下列各式的值:
(1)$\frac{sinα-3cosα}{sinα+cosα}$;          
(2)sin2α+sinαcosα+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖菱形ABCD的邊長(zhǎng)為4,E,F(xiàn)分別為AB,AD的中點(diǎn),∠BAD=120°,沿EF將平面AEF折起形成一個(gè)五棱錐A-BCDFE.
(1)證明:EF⊥AC;
(2)當(dāng)翻折形成的五棱錐體積最大時(shí),取CD中點(diǎn)M,求二面角M-AE-F的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案