8.若P=|x|x2-2x-3<0},Q={x|x>a},且P∩Q=P,則實(shí)數(shù)a的取值范圍是(-∞,-1].

分析 集合P為一個(gè)二次不等式的解集,先解出P=(-1,3),而Q=(a,+∞),再由P∩Q=P,P⊆Q,利用數(shù)軸可以求出實(shí)數(shù)a的取值范圍.

解答 解:集合P=|x|x2-2x-3<0},化簡(jiǎn)得P=(-1,3),
而Q={x|x>a}=(a,+∞),
∵P∩Q=P,∴P⊆Q,
∴a≤-1.
故答案為:(-∞,-1].

點(diǎn)評(píng) 本題考查集合的關(guān)系、解二次不等式及數(shù)形結(jié)合思想,屬基本運(yùn)算的考查.解題時(shí)應(yīng)該注意,在區(qū)間端點(diǎn)等號(hào)是否成立,對(duì)題意的影響.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的右焦點(diǎn)F作一條漸近線的垂線,垂足為P,線段OP的垂直平分線交y軸于點(diǎn)Q(其中O為坐標(biāo)原點(diǎn)).若△OFP的面積是△OPQ的面積的4倍,則該雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,已知平面α∩平面β=l,α⊥β.A、B是直線l上的兩點(diǎn),C、D是平面β內(nèi)的兩點(diǎn),且DA⊥l,CB⊥l,DA=4,AB=6,CB=8.P是平面α上的一動(dòng)點(diǎn),且有∠APD=∠BPC,則四棱錐P-ABCD體積的最大值是( 。
A.48B.16C.$24\sqrt{3}$D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC將梯形CDFE折起,使得平面CDFE⊥平面ABCD.
(1)證明:AC∥平面BEF;
(2)求三棱錐D-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.由曲線x2+y2=2|x|+2|y|圍成的圖形的面積為8+4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在平面直角坐標(biāo)系內(nèi),直線l:2x+y-2=0,將l與兩坐標(biāo)軸圍成的封閉圖形繞y軸旋轉(zhuǎn)一周,所得幾何體的體積為$\frac{2}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)集合A={x|$\frac{\sqrt{2}}{2}$≤2x≤$\sqrt{2}}\right\}$,B={x|lnx<0},則A∩B=( 。
A.(-$\frac{1}{2}$,$\frac{1}{2}$)B.(0,$\frac{1}{2}$)C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.?dāng)?shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N*,則an=n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=$\frac{{e}^{x+1}}{(x+1)^{2}}$-$\frac{m}{x+1}$(m為常數(shù),其中e是自然對(duì)數(shù)的底數(shù)).
(1)若f(x)在x=0處的切線與x-ey-2016=0垂直,求f(x)的極值;
(2)設(shè)g(x)=mln(x+1).
(Ⅰ)若m≤0,x>-1,求證:f(x)>g(x);
(Ⅱ)若x2f(x-1)+2m(x-1)>g(x-1)對(duì)任意x>e-2恒成立,求證:m<e.

查看答案和解析>>

同步練習(xí)冊(cè)答案