正三棱錐P-ABC各頂點(diǎn)都在一個(gè)半徑為2的球面上,球心到底面ABC的距離為1,求此正三棱錐P-ABC的體積.
【答案】分析:求出三角形ABC所在小圓半徑,求出三角形的邊長(zhǎng),推出三角形的面積,然后通過(guò)棱錐的體積公式求出體積即可.
解答:解:△ABC所在小圓半徑的高為
三角形的邊長(zhǎng)為b,由于,解得b=3
(3分)
球心到平面ABC的距離為1⇒三棱錐的高h(yuǎn)=2-1=1或h=2+1=3;                  (4分)
綜上(5分)
點(diǎn)評(píng):本題是基礎(chǔ)題,考查球的內(nèi)接三棱錐的有關(guān)知識(shí),求出三角形的邊長(zhǎng)與三角形的面積是解題的關(guān)鍵,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、下面關(guān)于三棱錐P-ABC的五個(gè)命題中,正確的命題有
①③④⑤
.①當(dāng)△ABC為等邊三角形,側(cè)面與底面所成的二面角都相等時(shí),三棱錐P-ABC為正三棱錐;②當(dāng)△ABC為等邊三角形,側(cè)面都為等腰三角形時(shí),三棱錐P-ABC為正三棱錐;③當(dāng)△ABC為等邊三角形,點(diǎn)A在側(cè)面PBC上的射影是三角形PBC的垂心時(shí),P-ABC為正三棱錐;④若三棱錐P-ABC各棱相等時(shí),它的外接球半徑和高的比為3:4:⑤當(dāng)三棱錐P-ABC各棱長(zhǎng)相等時(shí),若動(dòng)點(diǎn)M在側(cè)面PAB內(nèi)運(yùn)動(dòng),且點(diǎn)M到面ABC的距離與點(diǎn)M到點(diǎn)P的距離相等,則M的軌跡為橢圓的一部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱錐P-ABC中,AB=AC=10,BC=12,各側(cè)面與底面所成的二面角都是45°,則棱柱的高為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱錐P-ABC各頂點(diǎn)都在一個(gè)半徑為2的球面上,球心到底面ABC的距離為1,求此正三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

正三棱錐P-ABC各頂點(diǎn)都在一個(gè)半徑為2的球面上,球心到底面ABC的距離為1,求此正三棱錐P-ABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案