若過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)且垂直于x軸的直線被橢圓截得的弦長(zhǎng)為a,則該橢圓的離心率為
2
2
2
2
分析:根據(jù)題意,設(shè)過(guò)橢圓的右焦點(diǎn)且垂直于x軸的直線交橢圓于A、B兩點(diǎn),設(shè)A的坐標(biāo)為(c,y0),根據(jù)橢圓方程算出|y0|=
b2
a
,從而得到AB=
2b2
a
=a,可得a2=2b2,由此算出c=
2
2
a
,即可得到該橢圓的離心率.
解答:解:設(shè)過(guò)橢圓的右焦點(diǎn)且垂直于x軸的直線交橢圓于A、B兩點(diǎn),
可設(shè)A的坐標(biāo)為(c,y0),
c2
a2
+
y02
b2
=1
,解之得y02=
b4
a2
,可得|y0|=
b2
a

因此,AB=
2b2
a
=a,可得a2=2b2,
∴c=
a2-b2
=
2
2
a
,可得橢圓的離心率e=
c
a
=
2
2

故答案為:
2
2
點(diǎn)評(píng):本題給出橢圓的通徑長(zhǎng)等于它的半長(zhǎng)軸a,求橢圓的離心率.著重考查了橢圓的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)等知識(shí)點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左頂點(diǎn)A作斜率為1的直線l與橢圓的另一個(gè)交點(diǎn)為M,與y軸的交點(diǎn)為B,若AM=MB,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)焦點(diǎn)F引直線l:y=
b
a
x
的垂線FM,垂足為M,l交橢圓于P、Q兩點(diǎn),若
PM
=3
MQ
,則該橢圓的離心率為
2-
2
2-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=kx+2(k為常數(shù))過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的上頂點(diǎn)B和左焦點(diǎn)F,且被圓x2+y2=4截得的弦長(zhǎng)為L(zhǎng),若L≥
4
5
5
,則橢圓離心率e的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)焦點(diǎn)F引直線bx-ay=0的垂線,垂足為M,延長(zhǎng)FM交y軸于E,若
EM
=2
MF
,則該橢圓的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知過(guò)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左頂點(diǎn)A(-a,0)作直線1交y軸于點(diǎn)P,交橢圓于點(diǎn)Q,若△AOP是等腰三角形,且
PQ
=2
QA
,則橢圓的離心率為
2
5
5
2
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案