【題目】從中國教育在線官方公布的考研動機調查來看,本科生扎堆考研的原因大概集中在這6個方面:本科就業(yè)壓力大,提升競爭力;通過考研選擇真正感興趣的專業(yè);為了獲得學歷;繼續(xù)深造;隨大流;有名校情結.如圖是20152019年全國碩士研究生報考人數(shù)趨勢圖(單位:萬人)的拆線圖.

1)求關于的線性回歸方程;

2)根據(jù)(1)中的回歸方程,預測2021年全國碩士研究生報考人數(shù).

參考數(shù)據(jù):

回歸方程中斜率和截距的最小二乘估計公式分別為,.

【答案】1;(2338.6萬人

【解析】

1)根據(jù)折線圖中數(shù)據(jù)計算得到最小二乘法所需數(shù)據(jù),利用最小二乘法求得回歸直線;

2)將代入回歸直線即可求得所求預測值.

1)由折線圖中數(shù)據(jù)計算得:,

,

由參考數(shù)據(jù)知,,

,,

所求回歸方程為.

2)將年對應的代入回歸方程得:,

預測年全國碩士研究生報考人數(shù)約為萬人.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】煉鋼是一個氧化降碳的過程,由于鋼水含碳量的多少直接影響冶煉時間的長短,因此必須掌握鋼水含碳量和冶煉時間的關系.現(xiàn)已測得爐料熔化完畢時鋼水的含碳量與冶煉時間(從爐料熔化完畢到出鋼的時間)的一組數(shù)據(jù),如下表所示:

1

2

3

4

5

6

7

8

9

10

104

180

190

177

147

134

150

191

204

121

100

200

210

185

155

135

170

205

235

125

10400

36000

39900

32745

22785

18090

25500

39155

47940

15125

(1)據(jù)統(tǒng)計表明,之間具有線性相關關系,請用相關系數(shù)加以說明( ,則認為有較強的線性相關關系,否則認為沒有較強的線性相關關系,精確到0.001);

(2)建立關于的回歸方程(回歸系數(shù)的結果精確到0.01);

(3)根據(jù)(2)中的結論,預測鋼水含碳量為160個0.01%的冶煉時間.

參考公式:回歸方程中斜率和截距的最小二乘估計分別為,

,相關系數(shù)

參考數(shù)據(jù):,

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設點分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為0.

(1)求橢圓的方程;

(2)如圖,動直線與橢圓有且僅有一個公共點,點是直線上的兩點,且,,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某保險公司為客戶定制了5個險種:甲,一年期短險;乙,兩全保險;丙,理財類保險;丁,定期壽險:戊,重大疾病保險,各種保險按相關約定進行參保與理賠.該保險公司對5個險種參?蛻暨M行抽樣調查,得出如下的統(tǒng)計圖例,以下四個選項錯誤的是(

A.54周歲以上參保人數(shù)最少B.1829周歲人群參保總費用最少

C.丁險種更受參保人青睞D.30周歲以上的人群約占參保人群的80%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】423日是世界讀書日,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調查.各組人數(shù)統(tǒng)計如下:

小組

人數(shù)

12

9

6

9

1)從參加問卷調查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;

2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數(shù),求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=,xR)的圖象與x軸交點的橫坐標構成一個公差為的等差數(shù)列,把函數(shù)fx)的圖象沿x軸向左平移個單位,橫坐標伸長到原來的2倍得到函數(shù)gx)的圖象,則下列關于函數(shù)gx)的命題中正確的是( )

A.函數(shù)gx)是奇函數(shù)

B.gx)的圖象關于直線對稱

C.gx)在上是增函數(shù)

D.時,函數(shù)gx)的值域是[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)的切線與直線垂直,求的值;

2)討論函數(shù)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, ,, ,

1)證明:平面

2)求點到平面的距離;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)從某醫(yī)院中隨機抽取了位醫(yī)護人員的關愛患者考核分數(shù)(患者考核:分制),用相關的特征量表示;醫(yī)護專業(yè)知識考核分數(shù)(試卷考試:分制),用相關的特征量表示,數(shù)據(jù)如下表:

(1)求關于的線性回歸方程(計算結果精確到);

(2)利用(1)中的線性回歸方程,分析醫(yī)護專業(yè)考核分數(shù)的變化對關愛患者考核分數(shù)的影響,并估計當某醫(yī)護人員的醫(yī)護專業(yè)知識考核分數(shù)為分時,他的關愛患者考核分數(shù)(精確到).

參考公式及數(shù)據(jù):回歸直線方程中斜率和截距的最小二乘法估計公式分別為

,其中.

查看答案和解析>>

同步練習冊答案