已知,設(shè)曲線在點處的切線為。
(1)求實數(shù)的值;
(2)設(shè)函數(shù),其中。
求證:當(dāng)時,。
(1);(2)見解析;
解析試題分析:(1)利用導(dǎo)數(shù)的幾何意義可得在處的切線斜率為0及聯(lián)立方程解得;(2)將代入得的解析式,解析式中含有參數(shù),所以對進行分類討論,再利用求導(dǎo)數(shù)來討論函數(shù)的單調(diào)性,求出在的最小值和最大值即可;
試題解析:解:(1), 2分
依題意,且。 3分
所以。
解得。 4分
(2)由(1)得。
所以。
。 6分
當(dāng)時,由得,由得。
所以在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),是的極小值點。8分
當(dāng),時,,
所以的最小值為,最大值為。 9分
設(shè),則,
因為,所以。
所以在上單調(diào)遞減,
所以,。 11分
所以,當(dāng),時,。
又因為,, 12分
。 13分
所以當(dāng)時,
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(Ⅰ)若曲線與在公共點處有相同的切線,求實數(shù)的值;
(Ⅱ)若,求方程在區(qū)間內(nèi)實根的個數(shù)(為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;
(2)設(shè),求在上的最大值;
(3)試證明:對,不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),為常數(shù).
(1)若,求函數(shù)在上的值域;(為自然對數(shù)的底數(shù),)
(2)若函數(shù)在上為單調(diào)減函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知..
(1)求函數(shù)在區(qū)間上的最小值;
(2)對一切實數(shù),恒成立,求實數(shù)的取值范圍;
(3) 證明對一切, 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個不同的實根,求實數(shù)的值;
(3)數(shù)列滿足,,求的整數(shù)部分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx+2在x=1處有極值,則ab的最大值等于________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com