分析 (1)取BC中點F,連結(jié)EF,AF,由直棱柱的結(jié)構(gòu)特征和中位線定理可得四邊形ADEF是平行四邊形,故DE∥AF,由等腰三角形的性質(zhì)可得AF⊥BC,故DE⊥BC;
(2)把△BCE看做棱錐的底面,則DE為棱錐的高,求出棱錐的底面積和高,代入體積公式即可求出.
解答 證明:(1)取BC中點F,連結(jié)EF,AF,則EF△BCB1的中位線,∴EF∥BB1,EF=$\frac{1}{2}$BB1,
∵AD∥BB1,AD=$\frac{1}{2}$BB1,∴EF∥AD,EF=AD,∴四邊形ADEF是平行四邊形,∴DE∥AF,
∵AB=AC,F(xiàn)是BC的中點,∴AF⊥BC,∴DE⊥BC.
(2)∵BB1⊥平面ABC,AF?平面ABC,∴BB1⊥AF,
又∵AF⊥BC,BC?平面BCC1B1,BB1?平面BCC1B1,BC∩BB1=B,
∴AF⊥平面BCC1B1,∴DE⊥平面BCC1B1,
∵AC=5,BC=6,∴CF=$\frac{1}{2}BC$=3,∴AF=$\sqrt{A{C}^{2}-C{F}^{2}}$=4,∴DE=AF=4
∵BC=BB1=6,∴S△BCE=$\frac{1}{4}B{C}^{2}$=9.
∴三棱錐E-BCD的體積V=$\frac{1}{3}$S△BCE•DE=$\frac{1}{3}×9×4$=12.
點評 本題考查了線面垂直的性質(zhì)與判定,棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14π | B. | 12π | C. | 10π | D. | 8π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π-$\frac{2}{3}$ | B. | 2π-$\frac{4}{3}$ | C. | $\frac{5π}{3}$ | D. | 2π-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com