我校社團(tuán)聯(lián)即將舉行一屆象棋比賽,規(guī)則如下:兩名選手比賽時(shí),每局勝者得分,負(fù)者得分,比賽進(jìn)行到有一人比對(duì)方多分或打滿(mǎn)局時(shí)結(jié)束.假設(shè)選手甲與選手乙比賽時(shí),甲每局獲勝的概率皆為,且各局比賽勝負(fù)互不影響.
(Ⅰ)求比賽進(jìn)行局結(jié)束,且乙比甲多得分的概率;
(Ⅱ)設(shè)表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

(Ⅰ);(Ⅱ)隨機(jī)變量的分布列為









解析試題分析:(Ⅰ)這是一個(gè)獨(dú)立重復(fù)試驗(yàn),比賽進(jìn)行局結(jié)束,且乙比甲多得分,只能是前兩局乙勝一局,3,4局乙連勝,根據(jù)獨(dú)立重復(fù)試驗(yàn)從而求出,值得注意的是,做這一類(lèi)題,一定分析清楚,否則容易出錯(cuò);(Ⅱ)設(shè)表示比賽停止時(shí)已比賽的局?jǐn)?shù),只能取值,不能為3,5,分別求出的取值為的概率,列分布列,從而求出數(shù)學(xué)期望,易錯(cuò)點(diǎn)為的取值不正確,導(dǎo)致分布列錯(cuò)誤。
試題解析:(Ⅰ)由題意知,乙每局獲勝的概率皆為.比賽進(jìn)行局結(jié)束,且乙比甲多得分即頭兩局乙勝一局,3,4局連勝,則.   
(Ⅱ)由題意知,的取值為.則 ,所以隨機(jī)變量的分布列為










考點(diǎn):本題考查獨(dú)立重復(fù)事件的概率計(jì)算、離散型隨機(jī)變量的分布列、期望,考查學(xué)生的邏輯推理能力以及基本運(yùn)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某市職教中心組織廚師技能大賽,大賽依次設(shè)基本功(初賽)、面點(diǎn)制作(復(fù)賽)、熱菜烹制(決賽)三個(gè)輪次的比賽,已知某選手通過(guò)初賽、復(fù)賽、決賽的概率分別是,且各輪次通過(guò)與否相互獨(dú)立.
(I)設(shè)該選手參賽的輪次為,求的分布列和數(shù)學(xué)期望;
(Ⅱ)對(duì)于(I)中的,設(shè)“函數(shù)是偶函數(shù)”為事件D,求事件D發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),檢驗(yàn)方案是:先從這批產(chǎn)品中任取4件作檢驗(yàn),這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n。如果n=3,再?gòu)倪@批產(chǎn)品中任取4件作檢驗(yàn),若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過(guò)檢驗(yàn);如果n=4,再?gòu)倪@批產(chǎn)品中任取1件作檢驗(yàn),若為優(yōu)質(zhì)品,則這批產(chǎn)品通過(guò)檢驗(yàn);其他情況下,這批產(chǎn)品都不能通過(guò)檢驗(yàn)。
假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立
(1)求這批產(chǎn)品通過(guò)檢驗(yàn)的概率;
(2)已知每件產(chǎn)品檢驗(yàn)費(fèi)用為100元,凡抽取的每件產(chǎn)品都需要檢驗(yàn),對(duì)這批產(chǎn)品作質(zhì)量檢驗(yàn)所需的費(fèi)用記為X(單位:元),求X的分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了更好地開(kāi)展社團(tuán)活動(dòng),豐富同學(xué)們的課余生活,現(xiàn)用分層抽樣的方法從“模擬聯(lián)合國(guó)”,“街舞”,“動(dòng)漫”,“話劇”四個(gè)社團(tuán)中抽取若干人組成社團(tuán)指導(dǎo)小組,有關(guān)數(shù)據(jù)見(jiàn)下表:(單位:人)

(1)求的值;
(2)若從“動(dòng)漫”與“話劇”社團(tuán)已抽取的人中選2人擔(dān)任指導(dǎo)小組組長(zhǎng),求這2人分別來(lái)自這兩個(gè)社團(tuán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

小明參加完高考后,某日路過(guò)一家電子游戲室,注意到一臺(tái)電子游戲機(jī)的規(guī)則是:你可在1,2,3,4,5,6點(diǎn)中選一個(gè),押上賭注a元。擲3枚骰子,如果所押的點(diǎn)數(shù)出現(xiàn)1次、2次、3次,那么原來(lái)的賭注仍還給你,并且你還分別可以收到賭注的1倍、2倍、3倍的獎(jiǎng)勵(lì)。如果所押的點(diǎn)數(shù)不出現(xiàn),那么賭注就被莊家沒(méi)收。
(1)求擲3枚骰子,至少出現(xiàn)1枚為1點(diǎn)的概率;
(2)如果小明準(zhǔn)備嘗試一次,請(qǐng)你計(jì)算一下他獲利的期望值,并給小明一個(gè)正確的建議。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

小波以游戲方式?jīng)Q定:是去打球、唱歌還是去下棋.游戲規(guī)則為:以O(shè)為起點(diǎn),再?gòu)腁1,A2,A3,A4,A5,A6(如圖)這6個(gè)點(diǎn)中任取兩點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為X,若就去打球;若就去唱歌;若就去下棋.

(Ⅰ) 寫(xiě)出數(shù)量積X的所有可能取值;
(Ⅱ)分別求小波去下棋的概率和不去唱歌的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

德陽(yáng)中學(xué)數(shù)學(xué)競(jìng)賽培訓(xùn)共開(kāi)設(shè)有初等代數(shù)、初等幾何、初等數(shù)論和微積分初步共四門(mén)課程,要求初等代數(shù)、初等幾何都要合格,且初等數(shù)論和微積分初步至少有一門(mén)合格,則能取得參加數(shù)學(xué)競(jìng)賽復(fù)賽的資格,現(xiàn)有甲、乙、丙三位同學(xué)報(bào)名參加數(shù)學(xué)競(jìng)賽培訓(xùn),每一位同學(xué)對(duì)這四門(mén)課程考試是否合格相互獨(dú)立,其合格的概率均相同,(見(jiàn)下表),且每一門(mén)課程是否合格相互獨(dú)立,

課    程
初等代數(shù)
初等幾何
初等數(shù)論
微積分初步
合格的概率




(1)求甲同學(xué)取得參加數(shù)學(xué)競(jìng)賽復(fù)賽的資格的概率;
(2)記表示三位同學(xué)中取得參加數(shù)學(xué)競(jìng)賽復(fù)賽的資格的人數(shù),求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)盒子中裝有4張卡片,每張卡片上寫(xiě)有1個(gè)數(shù)字,數(shù)字分別是1、2、3、4,現(xiàn)從盒子中隨機(jī)抽取卡片.
(Ⅰ)若一次從中隨機(jī)抽取3張卡片,求3張卡片上數(shù)字之和大于或等于7的概率;
(Ⅱ)若第一次隨機(jī)抽取1張卡片,放回后再隨機(jī)抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩個(gè)盒子中各有3個(gè)球,其中甲盒中有2個(gè)黑球1個(gè)白球,乙盒中有1個(gè)黑球2個(gè)白球,所有球之間只有顏色區(qū)別.
(Ⅰ)若從甲、乙兩個(gè)盒子中各取一個(gè)球,求取出的2個(gè)球顏色相同的概率;
(Ⅱ)將這兩個(gè)盒子中的球混合在一起,從中任取2個(gè), 求取出的2個(gè)球中至少有一個(gè)黑球的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案