10.已知f(x)是定義在R上的奇函數(shù)滿足:f(x)=f (x+4),當x∈(0,2)時,f(x)=2x2,則f(7)=-2.

分析 由f(x+4)=f(x)求出函數(shù)的周期是4,利用函數(shù)的周期性、奇函數(shù)的性質(zhì),將f(7)轉(zhuǎn)化為-f(1),代入已知的解析式求值即可.

解答 解:因為f(x+4)=f(x),
所以函數(shù)f(x)是以周期是4的周期函數(shù),
因當c∈(0,2)時,f(x)=2x2,f(x)是奇函數(shù),
所以f(7)=f(8-1)=f(-1)=-f(1)=-2,
故答案為-2.

點評 本題考查函數(shù)的奇偶性、周期性的綜合應用,考查轉(zhuǎn)化思想.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)$f(x)=\sqrt{3}sin2ωx-cos2ωx$(其中ω∈(0,1)),若f(x)的圖象經(jīng)過點$(\frac{π}{6},0)$,則f(x)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間為$[{0,\frac{2π}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)$y=\sqrt{-{x^2}-2x+8}$的定義域為A,值域為B,則A∪B=[-4,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知集合A={x|x2-ax+a2-12=0},B={x|x2-2x-8=0},C={x|mx+1=0}.
(Ⅰ)若A=B,求a的值;       
(Ⅱ)若B∪C=B,求實數(shù)m的值組成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知z是純虛數(shù),且(2+i)z=1+ai3(i是虛數(shù)單位,a∈R),則|a+z|=(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={1,2,3,4},B={2,4,6},則A∩B的元素個數(shù)( 。
A.0個B.2個C.3個D.5個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合M={x|x<0,x∈R},N={x|x2+x-2=0,x∈R},則M∩N=(  )
A.ϕB.{-2}C.{1}D.{-2,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,則sinα+cosα等于( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如果對定義在R上的函數(shù)f(x),對任意兩個不相等的實數(shù)x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)f(x)“H函數(shù)”.下列函數(shù)是“H函數(shù)”的所有序號為①③.
①y=ex+x;②y=x2;③y=3x-sinx;④$\left\{\begin{array}{l}ln|x|,x≠0\\ 0,x=0\end{array}\right.$.

查看答案和解析>>

同步練習冊答案