【題目】設(shè)x,y滿足約束條件 ,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值M,若M的取值范圍是[1,2],則點M(a,b)所經(jīng)過的區(qū)域面積= .
【答案】
【解析】解:作出約束條件 所對應(yīng)的可行域(如圖△OAB及內(nèi)部),
變形目標(biāo)函數(shù)z=ax+by可得y=﹣ x+ z,
當(dāng)﹣ ≤﹣2時,直線經(jīng)過點A(1,0)時,z取最大值a∈[1,2],
由 得點M(a,b)所經(jīng)過的區(qū)域如下圖所示:
故點M(a,b)所經(jīng)過的區(qū)域面積S= ,
當(dāng)﹣ >﹣2時,直線經(jīng)過點B(0,2)時,z取最大值2b∈[1,2],
由 得點M(a,b)所經(jīng)過的區(qū)域如下圖所示:
故點M(a,b)所經(jīng)過的區(qū)域面積S= ,
綜上可得:點M(a,b)所經(jīng)過的區(qū)域面積面積S= ,
所以答案是: .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,則使得f(x)>f(2x﹣1)成立的x的取值范圍是( )
A.( ,1)
B.(﹣∞, )∪(1,+∞)??
C.(﹣ , )
D.(﹣∞,﹣ )∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,a,b,c分別是角A、B、C的對邊,向量 =(2sinB,2﹣cos2B), =(2sin2( + ),﹣1)且 ⊥ .
(1)求角B的大;
(2)若a= ,b=1,求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A、B、C所對的邊分別為a、b、c,且2acosB=3b﹣2bcosA.
(1)求 的值;
(2)設(shè)AB的中垂線交BC于D,若cos∠ADC= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD= ,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中點.
(1)求證:AE∥平面PBC;
(2)若直線AE與直線BC所成角等于 ,求二面角D﹣PB﹣A平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選修4-4 坐標(biāo)系與參數(shù)方程) 以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)曲線C的參數(shù)方程為 (是參數(shù)),直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程和曲線C的普通方程;
(2)設(shè)點P為曲線C上任意一點,求點P到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}與{bn}滿足:①a1=a<0,b1=b>0,②當(dāng)k≥2時,若ak﹣1+bk﹣1≥0,則ak=ak﹣1 , bk= ;若ak﹣1+bk﹣1<0,則ak= ,bk=bk﹣1 .
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)設(shè)Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 對任意正整數(shù)k,當(dāng)2≤k≤n時,恒有bk﹣1>bk , 求n的最大值(用a,b表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的序號為______.
①周期函數(shù)都有最小正周期;②偶函數(shù)一定不存在反函數(shù);
③“是單調(diào)函數(shù)”是“存在反函數(shù)”的充分不必要條件;
④若原函數(shù)與反函數(shù)的圖像有偶數(shù)個交點,則可能都不在直線上;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com