【題目】在正方體ABCDA1B1C1D1中,點E、F、G分別為棱A1D1A1A、A1B1的中點,給出下列四個命題:①EFB1C;②BC1∥平面EFG;③A1C⊥平面EFG;④異面直線FGB1C所成角的大小為.其中正確命題的序號為(  

A.①②B.②③C.①②③D.①②④

【答案】C

【解析】

畫出正方體的直觀圖,結合線面平行與垂直的判定定理和性質(zhì)定理逐項判斷即可得到正確選項.

如圖,

正方體ABCDA1B1C1D1中,A1D//B1C,又A1DEF,故B1CEF,即①正確;

BC1AD1,AD1//EF,故BC1//EF,又EF平面EFG,故BC1∥平面EFG,即②正確;

因為EFA1D,EFA1B1,所以EF⊥平面A1B1CD,又A1C 平面A1B1CD,所以EFA1C,同理可證EGA1C,又EFEG=EEF平面EFG,EG平面EFG,故A1C⊥平面EFG,即③正確;

連接AB1,則AB1//FG,故∠AB1C為異面直線FGB1C所成角,且∠AB1C=,即④錯誤.

故所有正確命題的序號為①②③.

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=lnx

1)若a4,求函數(shù)fx)的單調(diào)區(qū)間;

2)若函數(shù)fx)在區(qū)間(01]內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍;

3)若x1、x2R+,且x1x2,求證:(lnx1lnx2)(x1+2x2≤3x1x2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓C:(>>0)的右焦點為F(1,0),且過點(1),過點F且不與軸重合的直線與橢圓C交于A,B兩點,點P在橢圓上,且滿足.

(1)求橢圓C的標準方程;

(2),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求的單調(diào)區(qū)間;

2)當,討論的零點個數(shù);

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx)=xx2+3lnx

)求函數(shù)fx)的極值;

)證明:曲線yfx)在直線y2x2的下方(除點外).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為a,∠D60°,點HDC邊中點,現(xiàn)以線段AH為折痕將DAH折起使得點D到達點P的位置且平面PHA⊥平面ABCH,點EF分別為AB,AP的中點.

1)求證:平面PBC∥平面EFH

2)若三棱錐PEFH的體積等于,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,證明:當時,;當時,;

(2)若的極大值點,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓經(jīng)過點,且和直線相切.

(Ⅰ)求該動圓圓心的軌跡的方程;

(Ⅱ)已知點,若斜率為1的直線與線段相交(不經(jīng)過坐標原點和點),且與曲線交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐內(nèi)接于球O,平面ABC,為等邊三角形,且邊長,球的表面積為,則直線PC與平面PAB所成的角的正弦值為

A.B.

C.D.

查看答案和解析>>

同步練習冊答案