【題目】已知動圓經(jīng)過點
,且和直線
相切.
(Ⅰ)求該動圓圓心的軌跡
的方程;
(Ⅱ)已知點,若斜率為1的直線
與線段
相交(不經(jīng)過坐標原點
和點
),且與曲線
交于
兩點,求
面積的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形CDEF是正方形,四邊形ABCD為直角梯形,∠ADC=90°,AB∥DC,平面CDEF⊥平面ABCD,AB=ADCD=a,M在FB上,且BD∥平面ECM.
(1)求證:M為BF中點;
(2)求證:平面BCF⊥平面EMC;
(3)求直線CD與平面ECM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加某次知識競賽的同學中,選取60名同學將其成績(百分制,均為整數(shù))分成,
,
,
,
,
六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
(1)求分數(shù)內的頻率,并補全這個頻率分布直方圖;
(2)從頻率分布直方圖中,估計本次考試成績的中位數(shù);
(3)若從第1組和第6組兩組學生中,隨機抽取2人,求所抽取2人成績之差的絕對值大于10的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市舉行了一次初一學生調研考試,為了解本次考試學生的數(shù)學學科成績情況,從中抽取部分學生的分數(shù)(滿分為100分,得分取正整數(shù),抽取學生的分數(shù)均在之內)作為樣本(樣本容量
)進行統(tǒng)計,按照
的分組方法作出頻率分布直方圖,并作出了樣本分數(shù)的莖葉圖(莖葉圖中僅列出了得分在
的數(shù)據(jù)].
(Ⅰ)求頻率分布直方圖中的的值,并估計學生分數(shù)的中位數(shù);
(Ⅱ)字在選取的樣本中,從成績在80分以上(含80分)的學生中隨機抽取2名學生,求所抽取的2名學生中恰有一人得分在內的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】寒冷的冬天,某高中一組學生來到一大棚蔬菜基地,研究種子發(fā)芽與溫度控制技術的關系,他們分別記錄五組平均溫度及種子的發(fā)芽數(shù),得到如下數(shù)據(jù):
平均溫度 | 11 | 10 | 13 | 9 | 12 |
發(fā)芽數(shù) | 25 | 23 | 30 | 16 | 26 |
(Ⅰ)若從五組數(shù)據(jù)中選取兩組數(shù)據(jù),求這兩組數(shù)據(jù)平均溫度相差不超過概率;
(Ⅱ)求關于
的線性回歸方程
;
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(Ⅱ)屮所得的線性回歸方程是否可靠?
(注: ,
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列中,a1=2,a3+2是a2和a4的等差中項.
(1)求數(shù)列的通項公式;
(2)記=
log2
,求數(shù)列
的前n項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,
是坐標原點,設函數(shù)
的圖象為直線
,且
與
軸、
軸分別交于
、
兩點,給出下列四個命題:
①存在正實數(shù),使
的面積為
的直線
僅有一條;
②存在正實數(shù),使
的面積為
的直線
僅有二條;
③存在正實數(shù),使
的面積為
的直線
僅有三條;
④存在正實數(shù),使
的面積為
的直線
僅有四條.
其中,所有真命題的序號是( ).
A. ①②③ B. ③④ C. ②④ D. ②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某校學生參加社區(qū)服務的情況,采用按性別分層抽樣的方法進行調查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為的樣本,得到一周參加社區(qū)服務的時間的統(tǒng)計數(shù)據(jù)好下表:
超過1小時 | 不超過1小時 | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求,
;
(Ⅱ)能否有95%的把握認為該校學生一周參加社區(qū)服務時間是否超過1小時與性別有關?
(Ⅲ)以樣本中學生參加社區(qū)服務時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學生中隨機調查6名學生,試估計6名學生中一周參加社區(qū)服務時間超過1小時的人數(shù).
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com