1.已知復(fù)數(shù)z=$\frac{5}{1-2i}$,則復(fù)數(shù)z的共軛復(fù)數(shù)所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運算化簡復(fù)數(shù)z,得到復(fù)數(shù)z的共軛復(fù)數(shù),然后求出在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo),則答案可求.

解答 解:∵z=$\frac{5}{1-2i}$=$\frac{5(1+2i)}{(1-2i)(1+2i)}=1+2i$,
∴復(fù)數(shù)z的共軛復(fù)數(shù)為:1-2i,在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為:(1,-2),位于第四象限.
故選:D.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=AC=2,AA1=4
(Ⅰ)過BC的截面交AA1于P點,若△PBC為等邊三角形,求出點P的位置;
(Ⅱ)在(Ⅰ)條件下,求四棱錐P-BCC1B1與三棱柱ABC-A1B1C1的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.變量x,y滿足條件$\left\{\begin{array}{l}{x-3y+4≤0}\\{3x+5y≤30}\\{x≥1}\\{\;}\end{array}\right.$,則z=2x+y的最小值為$\frac{11}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.假設(shè)要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋中抽取60袋牛奶進(jìn)行檢驗,利用隨機(jī)數(shù)表抽樣時,先將800袋牛奶按000,001,…,799進(jìn)行編號,如果從隨機(jī)數(shù)表第8行第7列開始向右讀,請你寫出抽取檢測的第5袋牛奶的編號175.
(下面摘取了隨機(jī)數(shù)表第7行至第9行)
8442 1753 3157 2455 0688  7704 7447 6721 7633 5025   8392 1206 76
6301 6378 5916 9556 6719  9810 5071 7512 8673 5807   4439 5238 79
3321 1234 2978 6456 0782  5242 0744 3815 5100 1342   9966 0279 54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平行四邊形ABCD中,AB=2,AD=1,∠BAD=60°,E為線段CD上一動點,則$\overrightarrow{AE}•\overrightarrow{BD}$的取值范圍是[-3,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖的程序框圖,若輸入的x的值為1,則輸出的y的值是( 。
A.1B.4C.7D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知兩個命題:
p:“若復(fù)數(shù)z1,z2滿足z1-z2>0,則z1>z2.”;
q:“存在唯一的一個實數(shù)對(a,b)使得a-bi=i(2+i).”
其真假情況是( 。
A.p真q假B.p假q假C.p假q真D.p真q真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.sin$\frac{17π}{3}$=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,滿足$\overrightarrow a$•$\overrightarrow a$=$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{2}$$\overrightarrow a$•$\overline c$=$\overrightarrow b$•$\overrightarrow c$=1,則|$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$|的最小值為( 。
A.2B.4C.$\sqrt{14}$D.16

查看答案和解析>>

同步練習(xí)冊答案