【題目】如圖是由容量為100的樣本得到的頻率分布直方圖.其中前4組的頻率成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,在之間的數(shù)據(jù)個(gè)數(shù)為b,則a,b的值分別為(

A.78

B.,83

C.,78

D.83

【答案】A

【解析】

先根據(jù)直方圖求出前2組的頻數(shù),根據(jù)前4組成等比數(shù)列求出第3和第4組的人數(shù),從而求出后6組的人數(shù),根據(jù)直方圖可知間的頻數(shù)最大,即可求出頻率,根據(jù)等差數(shù)列的性質(zhì)可求出公差,從而求出在4.65.0之間的學(xué)生數(shù).

解:由頻率分布直方圖知組矩為0.1,間的頻數(shù)為

間的頻數(shù)為

又前4組的頻數(shù)成等比數(shù)列,公比為3

根據(jù)后6組頻數(shù)成等差數(shù)列,且共有人.

從而間的頻數(shù)最大,且為

,

設(shè)公差為,則

,從而

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點(diǎn),動(dòng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的為( )

A.①③B.③④C.①②D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,ACEF為平行四邊形,且平面ACEF⊥平面ABCD,設(shè)BDAC相交于點(diǎn)G,HFG的中點(diǎn).

(1)證明:BDCH;

(2)若AB=BD=2,AE=,CH=,求三棱錐F-BDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)若函數(shù)的最小值為,求的值.

)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在棱錐中,為矩形,

(1)在上是否存在一點(diǎn),使,若存在確定點(diǎn)位置,若不存在,請(qǐng)說明理由;

(2)當(dāng)中點(diǎn)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率,且過點(diǎn)

(1)求橢圓的方程;

(2)如圖,過橢圓的右焦點(diǎn)作兩條相互垂直的直線交橢圓分別于,且滿足, ,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x[0,1]時(shí),下列關(guān)于函數(shù)y=的圖象與的圖象交點(diǎn)個(gè)數(shù)說法正確的是( 。

A. 當(dāng)時(shí),有兩個(gè)交點(diǎn)B. 當(dāng)時(shí),沒有交點(diǎn)

C. 當(dāng)時(shí),有且只有一個(gè)交點(diǎn)D. 當(dāng)時(shí),有兩個(gè)交點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , ,且 , , .

)求證:平面平面;

)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為α為參數(shù)),將C上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>3倍,得曲線C1.以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

1)求C1的極坐標(biāo)方程

2)設(shè)MNC1上兩點(diǎn),若OMON,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案