經(jīng)過點(diǎn)P(2,
π
4
),且垂直于極軸的直線的極坐標(biāo)方程是______.
在直角坐標(biāo)系中,過點(diǎn)P(2,
π
4
),且垂直于極軸的直線 x=
2
,
其極坐標(biāo)方程為 ρcosθ=
2
,
故答案為:ρcosθ=
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,曲線相交于點(diǎn),則線段的中點(diǎn)到極點(diǎn)的距離是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線的極坐標(biāo)方程為,曲線C的參數(shù)方程為,設(shè)點(diǎn)是曲線C上的任意一點(diǎn),求到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)M,N分別是曲線ρsinθ=2和ρ=2cosθ-2sinθ上的動(dòng)點(diǎn),則|MN|的最小值是( 。
A.2-
2
B.2+
2
C.3-
2
D.3+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系xoy的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線C的極坐標(biāo)方程為ρ=2(cosθ+sinθ).
(Ⅰ)求C的直角坐標(biāo)方程;
(Ⅱ)直線l=
x=
1
2
t
y=1+
3
2
t
(t為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于E,求
1
|EA|
+
1
|EB|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C參數(shù)方程為
x=2cosθ
y=sinθ
,θ∈[0,2π)
,極點(diǎn)O與原點(diǎn)重合,極軸與x軸的正半軸重合.圓T的極坐標(biāo)方程為ρ2+4ρcosθ+4=r2,曲線C與圓T交于點(diǎn)M與點(diǎn)N.
(Ⅰ)求曲線C的普通方程與圓T直角坐標(biāo)方程;
(Ⅱ)求
TM
TN
的最小值,并求此時(shí)圓T的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線l:
x=1-2t
y=-1+2
3
t
(t為參數(shù)),曲線C:
x=cosθ
y=sinθ
(θ為參數(shù)),直線l與曲線C交于A、B兩點(diǎn),若點(diǎn)P的坐標(biāo)為(1,-1),則|PA|•|PB=|______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線,(為參數(shù))的對(duì)稱中心(    )
A.在直線B.在直線
C.在直線D.在直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中已知點(diǎn)A(3,0),P是圓珠筆上一個(gè)運(yùn)點(diǎn),且的平分線交PA于Q點(diǎn),求Q 點(diǎn)的軌跡的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案