【題目】已知直線過點,且在兩坐標軸上的截距相等,則此直線的方程為_____________.

【答案】

【解析】

分兩種情況考慮,第一:當所求直線與兩坐標軸的截距不為0時,設出該直線的方程為,把已知點坐標代入即可求出的值,得到直線的方程;第二:當所求直線與兩坐標軸的截距為0時,設該直線的方程為,把已知點的坐標代入即可求出的值,得到直線的方程,綜上,得到所有滿足題意的直線的方程.

解:①當所求的直線與兩坐標軸的截距不為0時,設該直線的方程為

代入所設的方程得:,則所求直線的方程為;

②當所求的直線與兩坐標軸的截距為0時,設該直線的方程為,

代入所求的方程得:,則所求直線的方程為

綜上,所求直線的方程為:

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與直線之間的陰影部分記為,區(qū)域中動點的距離之積為1.

(1)求點的軌跡的方程;

(2)對于區(qū)域中動點,求的取值范圍;

(3)動直線穿過區(qū)域,分別交直線兩點,若直線與點的軌跡有且只有一個公共點,求證:的面積值為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個鋁合金窗分為上、下兩欄,四周框架和中間隔檔的材料為鋁合金,寬均為6,上欄與下欄的框內(nèi)高度(不含鋁合金部分)的比為1:2,此鋁合金窗占用的墻面面積為28800,設該鋁合金窗的寬和高分別為,鋁合金窗的透光部分的面積為.

(1)試用表示

(2)若要使最大,則鋁合金窗的寬和高分別為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知圓A:(x+3)2+y2=100,圓A內(nèi)一定點B(3,0),圓P過B且與圓A內(nèi)切,則圓心P的軌跡方程為_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)藥研究所開發(fā)一種新藥,據(jù)監(jiān)測,如果成人按規(guī)定的劑量服用,服用藥后每毫升血液中的含藥量(微克)與服藥的時間(小時)之間近似滿足如圖所示的曲線,其中是線段,曲線是函數(shù),,且是常數(shù))的圖象.

1)寫出服藥后關于的函數(shù)關系式;

2)據(jù)測定,每毫升血液中的含藥量不少于微克時治療疾病有效.假設某人第一次服藥為早上,為保持療效,第二次服藥最遲應當在當天幾點鐘?

3)若按(2)中的最遲時間服用第二次藥,則第二次服藥后小時,該病人每毫升血液中的含藥量為多少微克?(精確到微克)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設計下面的實驗來估計的值:先請名同學,每人隨機寫下一個都小于1的正實數(shù)對;再統(tǒng)計兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計數(shù)來估計的值.假如統(tǒng)計結(jié)果是,那么可以估計

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中, 分別是的中點.

(1)求證: 平面

(2)若三棱柱的體積為4,求異面直線夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當,且的最大值為,求的值;

2)方程上的兩解分別為、,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求的定義域;

(2)判斷的奇偶性并給予證明;

(3)求關于x的不等式的解集.

查看答案和解析>>

同步練習冊答案