已知平面α外不共線的三點A、B、C,則α的距離都相等,則錯誤的結(jié)論是
 

①平面ABC必平行于α;
②平面ABC必不垂直于α;
③存在△ABC的一條中位線平行于α或在α
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:對給定的命題進(jìn)行逐個判斷即可.
解答: 解:對于①:若給定的不共線的三點A、B、C,有兩個分布在平面的一側(cè),第3個點分布在平面的另一側(cè),
此時也滿足它們到平面的距離相等,此時,這個平面和已知的平面則相交,故①錯誤;
對于②:根據(jù)①的分析,得到該命題是假命題;
對于③:當(dāng)不共線的三點A、B、C在平面的同一側(cè)時,此時平面ABC∥平面α,
此時存在△ABC的一條中位線平行于α,
當(dāng)不共線的三點A、B、C,有兩個分布在平面的一側(cè),第3個點分布在平面的另一側(cè)時,
此時存在△ABC的一條中位線在α內(nèi),
因此,③為真命題;
綜上,只有①②錯誤,
故答案為:①②.
點評:本題重點考查了空間中平面和平面平行判定,點到平面的距離等知識,屬于中檔題,解題關(guān)鍵是解題過程中做到分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

隨機向邊長為5,5,6的三角形中投一點P,則點P到三個頂點的距離都不小于1的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙C:x2+y2-2ax-2(8-a)y+4a+12=0(a∈R),點P(2,0).
(1)判斷點P與⊙C的位置關(guān)系;
(2)如果過點P的直線l與⊙C有兩個交點M、N,求證:|PM|•|PN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A′B′C′中,底面ABC是邊長為2的正三角形,D′是棱A′C′的中點,且AA′=2
2

(Ⅰ)試在棱CC′上確定一點M,使A′M⊥平面AB′D′;
(Ⅱ)當(dāng)點M在棱CC′中點時,求直線AB′與平面A′BM所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀程序運行后,輸出i=( 。
A、4B、5C、3D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若PO⊥平面ABC,O為垂足,∠ABC=90°,∠BAC=30°,BC=5,PA=PB=PC=10,則PO的長等于( 。
A、5
B、5
3
C、10
D、10
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a+
1
2x-1
是奇函數(shù),
(Ⅰ)求實數(shù)a的值,并證明你的結(jié)論;
(Ⅱ)求函數(shù)y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點.
(1)求證:EF∥平面ABC1D1
(2)求直線EF與平面B1FC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進(jìn)行鉛球測試,成績在7.95米及以上的為合格.把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(1)求這次鉛球測試成績合格的人數(shù);
(2)若由直方圖來估計這組數(shù)據(jù)的中位數(shù),指出它在第幾組內(nèi),并說明理由;
(3)若參加此次測試的學(xué)生中,有9人的成績?yōu)閮?yōu)秀,現(xiàn)在要從成績優(yōu)秀的學(xué)生中,隨機選出2人參加“畢業(yè)運動會”,已知a、b的成績均為優(yōu)秀,求兩人至少有1人入選的概率.

查看答案和解析>>

同步練習(xí)冊答案