定義運(yùn)算?:a?b=
a,a≤b
b,a>b
.設(shè)F(x)=f(x)?g(x),若f(x)=sinx,g(x)=cosx,x∈R.則F(x)的值域?yàn)椋ā 。?/div>
A、[-1,1]
B、[-
2
2
,1]
C、[-1,-
2
2
]
D、[-1,
2
2
]
分析:按照如下流程求解:①利用新定義的運(yùn)算化簡(jiǎn)F(x)的解析式;?②利用三角函數(shù)的周期性畫(huà)出函數(shù)在某一段上的圖象?③根據(jù)圖象分析函數(shù)的性質(zhì)得出函數(shù)的值域即可.
解答:精英家教網(wǎng)解:∵F(x)=f(x)?g(x)=
sinx,sinx≤cosx
cosx,sinx>cosx
,
由于y=sinx與y=cosx都是周期函數(shù),且最小正周期都為:2π,
故只須在一個(gè)周期[0,2π]上考慮函數(shù)的值域即可.
分別畫(huà)出y=sinx與y=cosx的圖象,如圖所示.
觀(guān)察圖象可得:F(x)的值域?yàn)?span id="gwsmiey" class="MathJye">[-1,
2
2
].
故選D.
點(diǎn)評(píng):本題以三角函數(shù)為載體考查分段函數(shù)的值域,屬于求二次函數(shù)的最值問(wèn)題,屬于基本題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算“*”如下:a*b=
a  a≥b
b2 a<b
,則函數(shù)f(x)=(1*x)•x-(2*x)(x∈[-2,2])的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意兩實(shí)數(shù)a、b,定義運(yùn)算“*”如下:a*b=
a,(a≥b)
b,(a<b)
則關(guān)于函數(shù)f(x)=sinx*cosx正確的命題是(  )
A、函數(shù)f(x)值域?yàn)閇-1,1]
B、當(dāng)且僅當(dāng)x=2kπ(k∈Z)時(shí),函數(shù)f(x)取得最大值1
C、函數(shù)f(x)的對(duì)稱(chēng)軸為x=kπ+
π
4
(k∈Z)
D、當(dāng)且僅當(dāng)2kπ<x<2kπ+
3
2
π
(k∈Z)時(shí),函數(shù)f(x)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義運(yùn)算f(a*b)=
a,a≥b
b,a<b
,則函數(shù)f(log2(1+x)*log2(1-x))的值域是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算“?”為:a?b=2a-b,則5?2=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•淄博三模)對(duì)任意實(shí)數(shù)a,b,定義運(yùn)算“*”如下:a*b=
a,a≥b
b,a<b
,則函數(shù)f(x)=(
1
2
)x*log2(x+2)
的值域?yàn)椋ā 。?/div>

查看答案和解析>>

同步練習(xí)冊(cè)答案