【題目】某城市100戶居民的月平均用電量(單位:度),以 分組的頻率分布直方圖如圖所示.

(1)求直方圖中的值;

(2)求月平均用電量的眾數(shù)和中位數(shù);

(3)在月平均用電量在 , 的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

【答案】(1)0.0075;(2)224;(3)5.

【解析】試題分析:(1)由頻率和為1,計算圖中x的值;(2)根據(jù)頻率分布直方圖觀察,最高矩形的中點橫坐標即為眾數(shù),令矩形面積和為,所取得的橫坐標為中位數(shù);(3)分別計算出月平均用電量在, , 的三組用戶的數(shù)量,根據(jù)分層抽樣的定義計算出抽取比例,得出月平均用電量在的用戶中應(yīng)抽取的戶數(shù).

試題解析:

(1)由直方圖的性質(zhì),可得 ,所以直方圖中的值是

(2)月平均用電量的眾數(shù)是. 

因為,

所以月平均用電量的中位數(shù)在內(nèi),

設(shè)中位數(shù)為,由,得

所以月平均用電量的中位數(shù)是224.

(3)月平均用電量為的用戶有戶,

月平均用電量為的用戶有戶,

月平均用電量為的用戶有戶,

抽取比例

所以月平均用電量在的用戶中應(yīng)抽取戶.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, 底面,底面是直角梯形, , , ,點上,且

(Ⅰ)已知點上,且,求證:平面平面;

(Ⅱ)當二面角的余弦值為多少時,直線與平面所成的角為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時, (萬元).當年產(chǎn)量不小于80千件時, (萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.

(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個,生產(chǎn)一個衛(wèi)兵需分鐘,生產(chǎn)一個騎兵需分鐘,生產(chǎn)一個傘兵需分鐘,已知總生產(chǎn)時間不超過小時,若生產(chǎn)一個衛(wèi)兵可獲利潤元,生產(chǎn)一個騎兵可獲利潤元,生產(chǎn)一個傘兵可獲利潤元.

(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)與騎兵個數(shù)表示每天的利潤(元);

(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下圖中,四邊形 ABCD是等腰梯形, , ,O、Q分別為線段AB、CD的中點,OQEF的交點為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得,連結(jié)AD、BC,得一幾何體如圖所示.

(Ⅰ)證明:平面ABCD平面ABFE

(Ⅱ)若上圖中, ,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:在四棱錐中,底面是菱形, , 平面,點的中點,且.

(1)證明:

(2)求三棱錐的體積;

(3)在線段上是否存在一點,使得平面;若存在,求出的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市兩所高中分別組織部分學生參加了“七五普法網(wǎng)絡(luò)知識大賽”,現(xiàn)從這兩所學校的參賽學生中分別隨機抽取30名學生的成績(百分制)作為樣本,得到樣本數(shù)據(jù)的莖葉圖如圖所示.

(Ⅰ)若乙校每位學生被抽取的概率為0.15,求乙校參賽學生總?cè)藬?shù);

(Ⅱ)根據(jù)莖葉圖,從平均水平與波動情況兩個方面分析甲、乙兩校參賽學生成績(不要求計算);

(Ⅲ)從樣本成績低于60分的學生中隨機抽取3人,求3人不在同一學校的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x2﹣1)=loga (a>0且a≠1)
(1)求函數(shù)f(x)的解析式,并判斷f(x)的奇偶性;
(2)解關(guān)于x的方程f(x)=loga

查看答案和解析>>

同步練習冊答案