(2012•泉州模擬)下列函數(shù)中,既是偶函數(shù),且在區(qū)間(0,+∞)內是單調遞增的函數(shù)是( 。
分析:對于A,C定義域不關于原點對稱,所以非奇非偶;
對于B,函數(shù)是偶函數(shù),但是在區(qū)間(0,+∞)內不是單調遞增的;
對于D,由2|-x|=2|x|,可知函數(shù)是偶函數(shù),由于2>1,故函數(shù)在區(qū)間(0,+∞)內是單調遞增的.
解答:解:對于A,C定義域不關于原點對稱,所以非奇非偶,故A,C不正確;
對于B,∵cos(-x)=cosx,∴函數(shù)是偶函數(shù),但是在區(qū)間(0,+∞)內不是單調遞增的,故B不正確;
對于D,∵2|-x|=2|x|,∴函數(shù)是偶函數(shù),由于2>1,∴函數(shù)在區(qū)間(0,+∞)內是單調遞增的,故D正確;
故選D.
點評:本題考查函數(shù)單調性與奇偶性的結合,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
(Ⅰ)請寫出fn(x)的表達式(不需證明);
(Ⅱ)設fn(x)的極小值點為Pn(xn,yn),求yn
(Ⅲ)設gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,試求a-b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)已知集合A={1,2,3},B={x|x2-x-2=0,x∈R},則A∩B為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)設函數(shù)f(x)=ax2+lnx.
(Ⅰ)當a=-1時,求函數(shù)y=f(x)的圖象在點(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-
12
的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數(shù)f(x)的導函數(shù).若a=1,試問:在區(qū)間[1,10]上是否存在k(k<100)個正數(shù)x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)設函數(shù)y=f(x)的定義域為D,若對于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究并利用函數(shù)f(x)=x3-3x2-sin(πx)的對稱中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=(  )

查看答案和解析>>

同步練習冊答案