【題目】在直角坐標(biāo)系中,以O為極點,x軸正半軸為極軸建立直角坐標(biāo)系,圓C的極坐標(biāo)方程為,直線的參數(shù)方程為(t為參數(shù)),直線和圓C交于A,B兩點,P是圓C上不同于A,B的任意一點.
(1)求圓心的極坐標(biāo);(2)求△PAB面積的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax2+bx+c(a≠0),滿足條件f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)當(dāng)x≥0時,f(x)≥mx-3恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是.假設(shè)各局比賽結(jié)果相互獨立.
(1)分別求甲隊以3:0,3:1,3:2獲勝的概率;
(2)若比賽結(jié)果為3:0或3:1,則勝利方得3分、對方得0分;若比賽結(jié)果為3:2,則勝利方得2分、對方得1分.求甲隊得分X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在區(qū)間(﹣1,1)上為減函數(shù)的是( 。
A.
B.y=cosx
C.y=ln(x+1)
D.y=2﹣x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地要經(jīng)過3個十字路口,設(shè)各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù),函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的值域為R,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(kR),且滿足f(﹣1)=f(1).
(1)求k的值;
(2)若函數(shù)y=f(x)的圖象與直線沒有交點,求a的取值范圍;
(3)若函數(shù),x[0,log23],是否存在實數(shù)m使得h(x)最小值為0,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x)=f(2-x),當(dāng)x∈[0,1]時f(x)=x2,則函數(shù)g(x)=|sin(πx)|-f(x)在區(qū)間[-1,3]上的所有零點的和為( 。
A. 6 B. 7 C. 8 D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)、g(x)、h(x)是定義域為R的三個函數(shù),對于命題:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均為增函數(shù),則f(x)、g(x)、h(x)中至少有一個增函數(shù);②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數(shù),則f(x)、g(x)、h(x)均是以T為周期的函數(shù),下列判斷正確的是( )
A.①和②均為真命題
B.①和②均為假命題
C.①為真命題,②為假命題
D.①為假命題,②為真命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com