【題目】已知函數(shù)有兩個(gè)零點(diǎn).
(1)求的取值范圍;
(2)記的極值點(diǎn)為,求證:.
【答案】(1)(2)見解析
【解析】
(1)求導(dǎo)得,分類討論求出函數(shù)的單調(diào)性,從而可求出答案;
(2)由題意得,則,令函數(shù),則,利用導(dǎo)數(shù)可求得,從而可得,可得,要證,只需,令,即證,令,求導(dǎo)后得函數(shù)的單調(diào)性與最值,由此可證結(jié)論.
解:(1)因?yàn)?/span>,
當(dāng)時(shí),,在單調(diào)遞增,至多只有一個(gè)零點(diǎn),不符合題意,舍去;
當(dāng)時(shí),若,則;若,則,
所以在單調(diào)遞增,在單調(diào)遞減,
所以,
因?yàn)?/span>有兩個(gè)零點(diǎn),所以必須,則,
所以,解得,
又因?yàn)?/span>時(shí),; 時(shí),,
所以當(dāng)時(shí),在和各有一個(gè)零點(diǎn),符合題意,
綜上,;
(2)由(1)知,且,
因?yàn)?/span>的兩個(gè)零點(diǎn)為,所以,所以,
解得,令所以,
令函數(shù),則,
當(dāng)時(shí),;當(dāng)時(shí),;
所以在單調(diào)遞增,在單調(diào)遞減,
所以,所以,所以,
因?yàn)?/span>,又因?yàn)?/span>,所以,
所以,即,
要證,只需,
即證,即證,即證,
令,再令,即證,
令,則,
所以在單調(diào)遞增,所以,
所以,原題得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面是菱形,,,為邊的中點(diǎn),點(diǎn)在線段上.
(1)證明:平面平面;
(2)若,平面,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期;
(2)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,再向下平移()個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,且函數(shù)的最大值為2.
(ⅰ)求函數(shù)的解析式; (ⅱ)證明:存在無窮多個(gè)互不相同的正整數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}首項(xiàng)a1=1,前n項(xiàng)和Sn與an之間滿足an=
(1)求證:數(shù)列{}是等差數(shù)列
(2)求數(shù)列{an}的通項(xiàng)公式
(3)設(shè)存在正數(shù)k,使(1+S1)(1+S2)…(1+Sn)≥k對(duì)于一切n∈N*都成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy下,曲線C1的參數(shù)方程為( 為參數(shù)),曲線C1在變換T:的作用下變成曲線C2.
(1)求曲線C2的普通方程;
(2)若m>1,求曲線C2與曲線C3:y=m|x|-m的公共點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)人民法院每年要審理大量案件,去年審理的四類案件情況如表所示:
編號(hào) | 項(xiàng)目 | 收案(件) | 結(jié)案(件) | |
判決(件) | ||||
1 | 刑事案件 | 2400 | 2400 | 2400 |
2 | 婚姻家庭、繼承糾紛案件 | 3000 | 2900 | 1200 |
3 | 權(quán)屬、侵權(quán)糾紛案件 | 4100 | 4000 | 2000 |
4 | 合同糾紛案件 | 14000 | 13000 | n |
其中結(jié)案包括:法庭調(diào)解案件、撤訴案件、判決案件等.根據(jù)以上數(shù)據(jù),回答下列問題.
(Ⅰ)在編號(hào)為1、2、3的收案案件中隨機(jī)取1件,求該件是結(jié)案案件的概率;
(Ⅱ)在編號(hào)為2的結(jié)案案件中隨機(jī)取1件,求該件是判決案件的概率;
(Ⅲ)在編號(hào)為1、2、3的三類案件中,判決案件數(shù)的平均數(shù)為,方差為S12,如果表中n,表中全部(4類)案件的判決案件數(shù)的方差為S22,試判斷S12與S22的大小關(guān)系,并寫出你的結(jié)論(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列滿足:,,其中.
(1)若,求數(shù)列的前項(xiàng)的和;
(2)若,.
①求數(shù)列的通項(xiàng)公式;
②記數(shù)列的前項(xiàng)的和為,若無窮項(xiàng)等比數(shù)列始終滿足,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),曲線的方程為.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l和曲線的極坐標(biāo)方程;
(2)曲線分別交直線l和曲線于點(diǎn)A,B,求的最大值及相應(yīng)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com