n是正數(shù),圓x2+y2-(4n+2)x-2ny+4n2+4n+1=0,當n變化時得到不同的圓,這些圓的公切線是( 。
A.y=0B.4x-3y-4=0
C.都不是D.y=0和4x-3y-4=0
將圓的方程化為標準方程得:(x-2n-1)2+(y-n)2=n2,
∵n>0,∴圓心坐標為(2n+1,n),半徑r=n,
∴圓心所在直線方程為x-2y-1=0,
當y=0時,x=1,即公切線恒過(1,0),設(shè)這些圓的公切線方程為y=kx-k,
∴圓心到切線的距離d=r,即
|2nk-n|
k2+1
=n,
整理得:3k2-4k=0,即k(3k-4)=0,
解得:k=0或k=
4
3

則這些圓的公切線方程為y=0或y=
4
3
x-
4
3
,即y=0或4x-3y-4=0.
故選D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

當a為任意實數(shù),直線(a-1)x-y+a+1=0恒過定點C,則以C為圓心,
5
為半徑的圓的方程為( 。
A.(x+1)2+(y+2)2=5B.(x-1)2+(y+2)2=5
C.(x+1)2+(y-2)2=5D.(x-1)2+(y-2)2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,矩形紙片ABCD的長為4,寬為2.AB,AD邊分別在x軸、y軸的正半軸上,點A與坐標原點重合.將矩形紙片沿直線折疊,使點A落在邊CD上,記為點A',如圖所示.
(1)設(shè)A'的坐標是(2a,2)(0≤a≤2),寫出折痕所在直線的方程;
(2)若折痕經(jīng)過B時,求折痕所在直線的斜率,并寫出以折痕為直徑的圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點A(4,1)的圓C與直線x-y-1=0相切于點B(2,1).則圓C的方程為( 。
A.x2+(y-2)2=4B.x2+(y+2)2=4C.(x+3)2+y2=2D.(x-3)2+y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于任意實數(shù)a,點P(a,2-a)與圓C:x2+y2=2的位置關(guān)系的所有可能是( 。
A.都在圓內(nèi)B.都在圓外
C.在圓上、圓外D.在圓上、圓內(nèi)、圓外

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:x2-2ax+y2-4y+a2=0(a>0)及直線l:x-y+3=0,當直線l被圓C截得的弦長為2
2
時.
(Ⅰ)求a的值;
(Ⅱ)求過點(3,5)并與圓C相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:x2+y2-4x-6y+12=0
(1)求過點A(1,5)的圓C的切線方程;
(2)求在兩坐標軸上截距之和為0,且截圓C所得弦長為2的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C:x2+y2-2x+4y=0,則過原點O且與圓C相切的直線方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過原點的直線與圓x2+y2+4x+3=0相切,若切點在第三象限,則該直線的方程是______.

查看答案和解析>>

同步練習(xí)冊答案