11.已知m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題正確的是(  )
A.若α,β不平行,則在α內(nèi)不存在與β平行的直線
B.若n,m不平行,則n與m不可能垂直于同一個平面
C.若α,β垂直于同一個平面,則α與β平行
D.若n,m平行于同一個平面,則n與m平行

分析 在A中,在α內(nèi)存在無數(shù)條與β平行的直線;在B中,由直線與平面垂直的性質(zhì)能判斷B的正誤;在C中,α與β平行或相交;在D中,n與m平行、相交或異面.

解答 解:由m,n是兩條不同的直線,α,β是兩個不同的平面,知:
在A中:若α,β不平行,則在α內(nèi)存在無數(shù)條與β平行的直線,故A錯誤;
在B中:由直線與平面垂直的性質(zhì)得,若n,m不平行,則n與m不可能垂直于同一個平面,故B正確;
在C中:若α,β垂直于同一個平面,則α與β平行或相交,故C錯誤;
在D中:若n,m平行于同一個平面,則n與m平行、相交或異面,故D錯誤.
故選:B.

點評 本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間的位置關系的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合A={x|2x-1>0},B={x|0<x<1},那么A∩B=( 。
A.$\{x|0<x<\frac{1}{2}\}$B.$\{x|\frac{1}{2}<x<1\}$C.{x|0<x<1}D.$\{x|x>\frac{1}{2}\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,正方形ADEF所在平面和等腰梯形ABCD所在的平面互相垂直,已知BC=4,AB=AD=2.
(1)求證:AC⊥BF;
(2)在線段BE上是否存在一點P,使得平面PAC⊥平面BCEF?若存在,求出$\frac{|BP|}{|PE|}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.兩平行直線2x-y+3=0和2x-y-1=0之間的距離是$\frac{{4\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.定義在R上的函數(shù)f(x)滿足:f(-x)=-f(x),f(x+2)=f(x),當且x∈[0,1]時,f(x)=x,則f(2011.5)=-0.5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.某四面體的三視圖如圖所示,正視圖與俯視圖都是斜邊長為2的等腰直角三角形,左視圖是兩直角邊長為1的三角形,該四棱錐的表面積是( 。
A.$1+\sqrt{3}$B.$1+2\sqrt{2}$C.$2+\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.求證:$\sqrt{7}$-$\sqrt{6}$<$\sqrt{3}$-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤1)}\\{lo{g}_{3}x(x>1)}\end{array}\right.$,若f[f($\frac{1}{a}$)]=2,則a=3-1或3-9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{xcosθ=3}\\{y=4tanθ}\end{array}\right.$(θ為參數(shù)),則曲線C的離心率為$\frac{5}{3}$.若點P(x,y)在曲線C上運動,則x-$\frac{1}{2}$y的取值范圍是[-$\sqrt{5}$,3].

查看答案和解析>>

同步練習冊答案