某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個點(diǎn),度量點(diǎn)的坐標(biāo),如圖.
(Ⅰ)拖動點(diǎn),發(fā)現(xiàn)當(dāng)時,,試求拋物線的方程;
(Ⅱ)設(shè)拋物線的頂點(diǎn)為,焦點(diǎn)為,構(gòu)造直線交拋物線于不同兩點(diǎn)、,構(gòu)造直線、分別交準(zhǔn)線于、兩點(diǎn),構(gòu)造直線、.經(jīng)觀察得:沿著拋物線,無論怎樣拖動點(diǎn),恒有.請你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)”改變?yōu)槠渌岸c(diǎn)”,其余條件不變,發(fā)現(xiàn)“與不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請寫出相應(yīng)的正確命題;否則,說明理由.
(Ⅰ)
(Ⅱ)設(shè)出直線方程,點(diǎn)的坐標(biāo),聯(lián)立方程組證明,所以
(Ⅲ)設(shè)拋物線的頂點(diǎn)為,定點(diǎn),過點(diǎn)的直線與拋物線相交于、兩點(diǎn),直線、分別交直線于、兩點(diǎn),則
【解析】
試題分析:解法一:(Ⅰ)把,代入,得, 2分
所以, 3分
因此,拋物線的方程. 4分
(Ⅱ)因?yàn)閽佄锞的焦點(diǎn)為,設(shè),
依題意可設(shè)直線,
由得,則 ① 6分
又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013052108182765725869/SYS201305210819030947849550_DA.files/image030.png">,,所以,,
所以,, 7分
又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013052108182765725869/SYS201305210819030947849550_DA.files/image036.png"> 8分
, ②
把①代入②,得, 10分
即,
所以,
又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013052108182765725869/SYS201305210819030947849550_DA.files/image017.png">、、、四點(diǎn)不共線,所以. 11分
(Ⅲ)設(shè)拋物線的頂點(diǎn)為,定點(diǎn),過點(diǎn)的直線與拋物線相交于、兩點(diǎn),直線、分別交直線于、兩點(diǎn),則 . 14分
解法二:(Ⅰ)同解法一.
(Ⅱ)因?yàn)閽佄锞的焦點(diǎn)為,設(shè), 5分
依題意,可設(shè)直線,
由得,
則
所以 7分
又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013052108182765725869/SYS201305210819030947849550_DA.files/image048.png">,,
所以,, 10分
所以,,
又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013052108182765725869/SYS201305210819030947849550_DA.files/image017.png">、、、四點(diǎn)不共線,所以. 11分
(Ⅲ)同解法一. 14分
解法三:(Ⅰ)同解法一.
(Ⅱ)因?yàn)閽佄锞的焦點(diǎn)為,設(shè),
依題意,設(shè)直線,
由得,則, 6分
又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013052108182765725869/SYS201305210819030947849550_DA.files/image030.png">,,所以,,
又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013052108182765725869/SYS201305210819030947849550_DA.files/image055.png">, 9分
所以,所以平行于軸;
同理可證平行于軸;
又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013052108182765725869/SYS201305210819030947849550_DA.files/image017.png">、、、四點(diǎn)不共線,所以. 11分
(Ⅲ)同解法一. 14分
考點(diǎn):本小題主要考查拋物線的標(biāo)準(zhǔn)方程、直線與圓錐曲線的位置關(guān)系.
點(diǎn)評:圓錐曲線問題在高考中每年必考,且一般出在壓軸題的位置上,難度較低,主要考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、分類與整合思想、數(shù)形結(jié)合思想等。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個點(diǎn),度量點(diǎn)的坐標(biāo),如圖.
(Ⅰ)拖動點(diǎn),發(fā)現(xiàn)當(dāng)時,,試求拋物線的方程;
(Ⅱ)設(shè)拋物線的頂點(diǎn)為,焦點(diǎn)為,構(gòu)造直線交拋物線于不同兩點(diǎn)、,構(gòu)造直線、分別交準(zhǔn)線于、兩點(diǎn),構(gòu)造直線、.經(jīng)觀察得:沿著拋物線,無論怎樣拖動點(diǎn),恒有.請你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)”改變?yōu)槠渌岸c(diǎn)”,其余條件不變,發(fā)現(xiàn)“與不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請寫出相應(yīng)的正確命題;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個點(diǎn),度量點(diǎn)的坐標(biāo),如圖.
(Ⅰ)拖動點(diǎn),發(fā)現(xiàn)當(dāng)時,,試求拋物線的方程;
(Ⅱ)設(shè)拋物線的頂點(diǎn)為,焦點(diǎn)為,構(gòu)造直線交拋物線于不同兩點(diǎn)、,構(gòu)造直線、分別交準(zhǔn)線于、兩點(diǎn),構(gòu)造直線、.經(jīng)觀察得:沿著拋物線,無論怎樣拖動點(diǎn),恒有.請你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)”改變?yōu)槠渌岸c(diǎn)”,其余條件不變,發(fā)現(xiàn)“與不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請寫出相應(yīng)的正確命題;否則,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com