3.設(shè)全集U是實數(shù)集R,M={x|x2>4},N為函數(shù)y=ln(4x-3-x2)的定義域,則圖中陰影部分所表示的集合是{x|1<x≤2}.

分析 由圖象可知陰影部分對應(yīng)的集合為N∩(∁UM),然后根據(jù)集合的基本運(yùn)算即可.

解答 解:M={x|x2>4}={x|x>2或x<-2},
由4x-3-x2>0,得1<x<3,即N={x|1<x<3},
由圖象可知陰影部分對應(yīng)的集合為N∩(∁UM),
∴∁UM={x|-2≤x≤2},
∴N∩(∁UM)={x|1<x≤2};
故答案為:{x|1<x≤2}.

點評 本題主要考查集合的基本運(yùn)算,利用Venn圖確定集合的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.為得到函數(shù)$y=2sin(2x+\frac{π}{4})$的圖象,只需將函數(shù)y=2cos2x的圖象( 。
A.向左平移$\frac{π}{4}$單位B.向右平移$\frac{π}{4}$單位C.向左平移$\frac{π}{8}$單位D.向右平移$\frac{π}{8}$單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若集合M={x|1<x<4},N={x|x2-7x<0},則M∩N等于( 。
A.{x|0<x<4}B.{x|1<x<7}C.{x|1<x<4}D.{x|4<x<7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在正四棱臺ABCD-A1B1C1D1中,A1B1=a,AB=2a,E、F分別是AD、AB的中點.求證:平面EFB1D1∥平面BDC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知三棱錐A-BCD中,AB=CD,且直線AB與CD成60°角,點M、N分別是BC、AD的中點,求直線AB和MN所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.以平面直角坐標(biāo)系的原點為極點,以x軸正半軸為極軸建立極坐標(biāo)系,已知圓O的極坐標(biāo)方程為ρ=6cosθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-t}\\{y=2-3t}\end{array}\right.$(t為參數(shù)).
(1)求圓O的直角坐標(biāo)方程及直線l的普通方程;
(2)求圓O上離直線l距離最近的點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.平面直角坐標(biāo)系xOy中,曲線C1上的動點M到點F(0,1)的距離比它到x軸的距離大1.
(1)求曲線C1方程;
(2)設(shè)P為C1上一點(位于y軸右側(cè)),過P作C1的切線,與x軸交于A.直線AB與圓C2:x2+(y-1)2=1相切于點B(異于點O),問△PAB與△PAO的面積之比是否為定值?若是,求出該比值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知F是拋物線C:y2=-2x的焦點,過F且傾斜角為120°的直線l交拋物線C于A,B兩點.
(1)求直線l的方程;
(2)求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知一個球的表面積和體積相等,則它的半徑為3.

查看答案和解析>>

同步練習(xí)冊答案