如圖,三棱柱A1B1C1-ABC中,側(cè)棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中點(diǎn),則下列敘述正確的是( )

A.AE、B1C1為異面直線,且AE⊥B1C1
B.AC⊥平面A1B1BA
C.CC1與B1E是異面直線
D.A1C1∥平面AB1E
【答案】分析:由題意,此幾何體是一個(gè)正三棱柱,由底面是正三角形,E是中點(diǎn),由這些條件對(duì)四個(gè)選項(xiàng)逐一判斷得出正確選項(xiàng).
解答:解:A正確,因?yàn)锳E,B1C1為在兩個(gè)平行平面中且不平行的兩條直線,故它們是異面直線;AE⊥BC,所以AE⊥B1C1
B不正確,由題意知,上底面ABC是一個(gè)正三角形,故不可能存在AC⊥平面ABB1A1;
C不正確,因?yàn)镃C1與B1E在同一個(gè)側(cè)面中,故不是異面直線;
D不正確,因?yàn)锳1C1所在的平面與平面AB1E相交,且A1C1與交線有公共點(diǎn),故A1C1∥平面AB1E不正確;
故選A.
點(diǎn)評(píng):本題考查空間中直線與平面之間的位置關(guān)系,解題的關(guān)鍵是理解清楚題設(shè)條件,根據(jù)所學(xué)的定理,定義對(duì)所面對(duì)的問(wèn)題進(jìn)行證明得出結(jié)論,本題考查空間想像能力以及推理誰(shuí)的能力,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為a的正三角形,側(cè)面ABB1A1是菱形且垂直于底面,∠A1AB=60°,M是A1B1的中點(diǎn).
(1)求證:BM⊥AC;
(2)求二面角B-B1C1-A1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,三棱柱A1B1C1-ABC的三視圖中,主視圖和左視圖是全等的矩形,俯視圖是等腰直角三角形,已知點(diǎn)M式A1B1的中點(diǎn).
(I)求證B1C∥平面AC1M;
(Ⅱ)設(shè)AC與平面AC1M的夾角為θ,求sinθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,AB=BC=2AA1,∠ABC=90°,M是BC中點(diǎn).
(Ⅰ)求證:A1B∥平面AMC1
(Ⅱ)求直線CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問(wèn):在棱A1B1上是否存在點(diǎn)N,使AN與MC1成角60°?若存在,確定點(diǎn)N的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1 C1中,側(cè)棱AA1⊥平面ABC,AB=BC=AA1=2,AC=2
2
,E,F(xiàn)分別是A1B,BC的中點(diǎn).
(Ⅰ)證明:EF∥平面AAlClC;
(Ⅱ)證明:AE⊥平面BEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為a的正三角形,側(cè)面ABB1A1是菱形且垂直于底面,∠A1AB=60°,M是A1B1的中點(diǎn).
(1)求證:BM⊥AC;
(2)求二面角B-B1C1-A1的正切值;
(3)求三棱錐M-A1CB的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案