分析 (1)求出C1關(guān)于直線l對(duì)稱的C2的坐標(biāo),即可求圓C1關(guān)于直線l對(duì)稱的圓C2的方程;
(2)設(shè)出過P點(diǎn)的直線l1與l2的點(diǎn)斜式方程,根據(jù)⊙C1和⊙C2的半徑相等,及直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,可得⊙C1的圓心到直線l1的距離和圓C2的圓心到直線l2的距離相等,故我們可以得到一個(gè)關(guān)于直線斜率k的方程,即可以求所有滿足條件的點(diǎn)P的坐標(biāo).
解答 解:(1)設(shè)C2(a,b),則$\left\{\begin{array}{l}{\frac{a+3}•(-\frac{7}{4})=-1}\\{14×\frac{a-3}{2}+8×\frac{2}-23=0}\end{array}\right.$,
解得a=4,b=4,
∴圓C2的方程:(x-4)2+(y-4)2=4;
(2)設(shè)點(diǎn)P(a,b)滿足條件,
由題意分析可得直線l1、l2的斜率均存在且不為0,
不妨設(shè)直線l1的方程為y-b=k(x-a),k≠0
則直線l2方程為:y-b=-$\frac{1}{k}$(x-a)
∵⊙C1和⊙C2的半徑相等,及直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,
∴⊙C1的圓心到直線l1的距離和圓C2的圓心到直線l2的距離相等
即$\frac{|-k(3+a)+b|}{\sqrt{1+{k}^{2}}}$=$\frac{|k(4-b)+4-a|}{\sqrt{{k}^{2}+1}}$
整理得|-k(3+a)+b||=|k(4-b)+4-a|
∴-k(3+a)+b=±[k(4-b)+4-a],
即k(-a+b-7)=a+b-4或(-a-b+1)k=-a+b+4
因k的取值有無窮多個(gè),所以$\left\{\begin{array}{l}{-a+b-7=0}\\{a+b-4=0}\end{array}\right.$或$\left\{\begin{array}{l}{-a-b+1=0}\\{-a+b+4=0}\end{array}\right.$
解得a=-$\frac{3}{2}$,b=$\frac{11}{2}$或a=$\frac{5}{2}$,b=-$\frac{3}{2}$,
這樣的點(diǎn)只可能是點(diǎn)P1(-$\frac{3}{2}$,$\frac{11}{2}$)或點(diǎn)P2($\frac{5}{2}$,-$\frac{3}{2}$)
點(diǎn)評(píng) 本題考查圓的方程,考查點(diǎn)到直線的距離公式,直線與圓的位置關(guān)系,對(duì)稱的知識(shí),注意方程無數(shù)解的條件,考查轉(zhuǎn)化思想,函數(shù)與方程的思想,常考題型,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{6}$,$\frac{1}{\root{3}{16}}$] | B. | [$\frac{1}{6}$,$\frac{1}{4}$] | C. | [$\frac{1}{9}$,$\frac{1}{\root{3}{16}}$] | D. | [$\frac{1}{9}$,$\frac{1}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com