20.函數(shù)f(x)=$\frac{2x-1}{x+1}(x∈[{0,2}])$的值域?yàn)閇-1,1].

分析 分離常數(shù)得到$f(x)=2-\frac{3}{x+1}$,可判斷該函數(shù)在[0,2]上的單調(diào)性,根據(jù)單調(diào)性即可求出f(x)的最大、最小值,從而求出該函數(shù)的值域.

解答 解:$f(x)=\frac{2(x+1)-3}{x+1}=2-\frac{3}{x+1}$;
f(x)在[0,2]上單調(diào)遞增;
∴x=0時(shí),f(x)取最小值-1,x=2時(shí),f(x)取最大值1;
∴f(x)的值域?yàn)閇-1,1].
故答案為:[-1,1].

點(diǎn)評(píng) 考查函數(shù)值域的概念及求法,分離常數(shù)法的運(yùn)用,以及反比例函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.古代數(shù)學(xué)家楊輝在沈括的隙積術(shù)的基礎(chǔ)上想到:若由大小相等的圓球垛成類似于正四棱臺(tái)的方垛,上底由a×a個(gè)球組成,以下各層的長(zhǎng)、寬依次各增加過(guò)一個(gè)球,共有n層,最下層(即下底)由b×b個(gè)球組成,楊輝給出求方垛中圓球總數(shù)的公式如下:S=$\frac{n}{3}$(a2+b2+ab+$\frac{b-a}{2}$),根據(jù)以上材料,我們可得12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線C的準(zhǔn)線為x=-1.
(Ⅰ)求拋物線C的標(biāo)準(zhǔn)方程;
(Ⅱ)斜率為$\sqrt{3}$的直線l過(guò)拋物線C的焦點(diǎn)F,與拋物線C交于A,B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在平行四邊形ABCD中,AB=$\frac{1}{2}$BC=1,∠BAD=120°,$\overrightarrow{BE}$=$\frac{1}{2}$$\overrightarrow{BC}$,則$\overrightarrow{AC}$•$\overrightarrow{DE}$=(  )
A.-$\frac{7}{2}$B.-$\frac{5}{2}$C.-$\frac{3}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù) f(x)=2x+x,則 (  )
A.f(1)>f(2)B.f(π)<f(3)C.$f(\sqrt{e})<f(1.5)$D.f(1.10.5)>f(log32)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.定義在R上的奇函數(shù)f(x)滿足x>0時(shí),f(x)=x-$\sqrt{x}$+1.
(1)求函數(shù)f(x)的解析式; 
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若a=22.5,b=lg2.5,c=1,則a,b,c之間的大小關(guān)系是( 。
A.c>b>aB.c>a>bC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某班2名同學(xué)準(zhǔn)備報(bào)名參加浙江大學(xué)、復(fù)旦大學(xué)和上海交大的自主招生考試,要求每人最多選報(bào)兩所學(xué)校,則不同的報(bào)名結(jié)果有(  )
A.33種B.24種C.27種D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)集合A={x|y=lg(1-x)},集合B={y|y=ln(1-x)},則集合(∁RA)∩B=( 。
A.(0,1)B.(-1,0)C.(-∞,1)D.[1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案